686 resultados para musculo-skeletal
Resumo:
Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.
Resumo:
Numerous studies have applied skeletochronology to sea turtle species. Because many of the studies have lacked validation, the application of this technique to sea turtle age estimation has been called into question. To address this concern, we obtained humeri from 13 known-age Kemp’s ridley (Lepidochelys kempii) and two loggerhead (Caretta caretta) sea turtles for the purposes of examining the growth marks and comparing growth mark counts to actual age. We found evidence for annual deposition of growth marks in both these species. Corroborative results were found in Kemp’s ridley sea turtles from a comparison of death date and amount of bone growth following the completion of the last growth mark (n=76). Formation of the lines of arrested growth in Kemp’s ridley sea turtles consistently occurred in the spring for animals that strand dead along the mid- and south U.S. Atlantic coast. For both Kemp’s ridley and loggerhead sea turtles, we also found a proportional allometry between bone growth (humerus dimensions) and somatic growth (straight carapace length), indicating that size-at-age and growth rates can be estimated from dimensions of early growth marks. These results validate skeletochronology as a method for estimating age in Kemp’s ridley and loggerhead sea turtles from the southeast United States.
Resumo:
Marine mammal diet is typically characterized by identifying fish otoliths and cephalopod beaks retrieved from stomachs and fecal material (scats). The use and applicability of these techniques has been the matter of some debate given inherent biases associated with the method. Recent attempts to identify prey using skeletal remains in addition to beaks and otoliths are an improvement; however, difficulties incorporating these data into quantitative analyses have limited results for descriptive analyses such as frequency of occurrence. We attempted to characterize harbor seal (Phoca vitulina) diet in an area where seals co-occur with several salmon species, some endangered and all managed by state or federal agencies, or both. Although diet was extremely variable within sampling date, season, year, and between years, the frequency and number of individual prey were at least two times greater for most taxa when prey structures in addition to otoliths were identified. Estimating prey mass in addition to frequency and number resulted in an extremely different relative importance of prey in harbor seal diet. These data analyses are a necessary step in generating estimates of the size, total number, and annual biomass of a prey species eaten by pinnipeds for inclusion in fisheries management plans.
Resumo:
Aspartate aminotransferase (E.C. 2.6.1.1.) from the skeletal muscle of fresh water fish Cirrhina mrigala has been purified 40 fold by ammonium sulphate fractionation, adsorption on alumina Csub(8) gel and chromatography using DEAE-cellulose column and the properties of the purified enzyme studied. The pH optimum of the enzyme is 7.8. The Km value of aspartic acid and 2-oxoglutaric acid are found to be 2.8 x 10sub(-3) M and 1.0 x 10sub(-4) M respectively. The activity of enzyme is inhibited by p-chloromercurybenzoate, hydroxylamine hydrochloride and sodium cyanide. The inhibition by pchloromercurybenzoate is reversed by reduced glutathione, B-mercaptoethanol and cysteine. Dicarboxylic acids such as maleic acid, malic acid and succinic acid inhibit the enzyme activity. The enzyme is not activated by any of the metal ions tested and heavy metal ions such as mercury and silver strongly inhibit the enzyme activity.
Resumo:
During the course of evolution, the human skeletal system has evolved rapidly leading to an incredible array of phenotypic diversity, including variations in height and bone mineral density. However, the genetic basis of this phenotypic diversity and the relatively rapid tempo of evolution have remained largely undocumented. Here, we discover that skeletal genes exhibit a significantly greater level of population differentiation among humans compared with other genes in the genome. The pattern is exceptionally evident at amino acid-altering sites within these genes. Divergence is greater between Africans and both Europeans and East Asians. In contrast, relatively weak differentiation is observed between Europeans and East Asians. SNPs with higher levels of differentiation have correspondingly higher derived allele frequencies in Europeans and East Asians. Thus, it appears that positive selection has operated on skeletal genes in the non-African populations and this may have been initiated with the human colonization of Eurasia. In conclusion, we provide genetic evidence supporting the rapid evolution of the human skeletal system and the associated diversity of phenotypes.
Resumo:
Several zeolite catalysts such as SAPO-11, ZSM-11, ZSM-12, etc. were selected to convert I-hexene to branched hexenes in this work. Pore size of the zeolite catalyst plays an important role on the yield and the distribution of branched isohexenes. And the zeolite catalysts with the pore size of 0.6nm are optimum to produce dimethylbutenes (DMB). SAPO-11 zeolite is a suitable skeletal isomerization catalyst, especially in the production of methyl pentenes. Under the following reaction conditions: WHSV=1.0 h(-1), H-2/hexene=8, T=250 degreesC, P=0.2 MPa, the yield of skeletal isohexenes remains above 80% at the prolonged time-on stream of 80 h, accompanying low C5-, C7+ products and low carbon deposition on the catalyst.
Resumo:
We thank John Stubblefield for editing, Junling Li for the assistance in the Western blot analysis. This research was supported by a training grant from National Institutes of Health (#T32 AR07592) and a research grant MB-8713-08 from United States - Israel Binational Agriculture Research and Development Fund.
Resumo:
The desulfurization of thiophene on Raney Ni and rapidly quenched skeletal Ni (RQ Ni) has been studied in ultrahigh vacuum (UHV) by X-ray photoelectron spectroscopy (XPS). The Raney Ni or RQ Ni can be approximated as a hydrogen-preadsorbed polycrystalline Ni-alumina composite. It is found that thiophene molecularly adsorbs on Raney Ni or RQ Ni at 103 K. At 173 K, thiophene on alumina is desorbed, while thiophene in direct contact with the metallic Ni in Raney Ni undergoes C-S bond scission, leading to carbonaceous species most probably in the metallocycle-like configuration and atomic sulfur. On RQ Ni, the temperature for thiophene dissociation is about 100 K higher than that on Raney Ni. The lower reactivity of RQ Ni toward thiophene is tentatively attributed to lattice expansion of Ni crystallites in RQ Ni due to rapid quenching. The existence of alumina and hydrogen may block the further cracking of the metallocycle-like species on Raney Ni and RQ Ni at higher temperatures, which has been the dominant reaction pathway on Ni single crystals. By 473 K, the C Is peak has disappeared, leaving nickel sulfide on the surface.
Resumo:
Grattan, J., Huxley, S., Karaki, L. A., Toland, H., Gilbertson, D., Pyatt, B., Saad, Z. A. (2002). 'Death . . . more desirable than life'? The human skeletal record and toxicological implications of ancient copper mining and smelting in Wadi Faynan, southwestern Jordan. Toxicology and Industrial Health, 18 (6), 297-307.
Resumo:
Musculoskeletal ageing is associated with profound morphological and functional changes that increase fall risk and disease incidence and is characterised by age-related reductions in motor unit number and atrophy of muscle fibres, particularly type II fibres. Decrements in functional strength and power are relatively modest until the 6th decade, after which the rate of loss exponentially accelerates, particularly beyond the 8th decade of life. Physical activity is a therapeutic modality that can significantly attenuate age-related decline. The underlying signature of ageing, as manifested by perturbed redox homeostasis, leads to a blunting of acute and chronic redox regulated exercise adaptations. Impaired redox regulated exercise adaptations are mechanistically related to altered exercise-induced reactive oxygen and nitrogen species generation and a resultant failure to properly activate redox regulated signaling cascades. Despite the aforementioned specific impairment in redox signaling, exercise induces a plethora of beneficial effects, irrespective of age. There is, therefore, strong evidence for promoting regular physical exercise, especially progressive resistance training as a lifelong habitual practice.
Resumo:
The observations of Hooke (1665), Schleiden & Schwann (1839) and Virchow (1855) led to the identification of the cell as the basic structural unit of living material. In the intervening years, it has been firmly established that the chemical processes which underlie the proper functioning, development and reproduction of the organism are cellular activities. The development of the electron microscope has enabled cell structure to be studied in detail. A picture of the cell as an entity with a complex and highly organised internal structure has emerged from the work of Palade, Porter, Fernandez-Moran and many others. Although cells from different tissues and organisms differ in aspects of their structure and consequently in function, they have several features in common. A retentive membrane encloses a number of cell constituents, which include membrane-enclosed subcellular structures known as organelles. The cells of most tissues also contain a reticulum or system of branching tubules. The interplay of the biochemical activities of these structures enables the cell to function. Almost thirty years ago, Claude, Palade, Schneider, Hogeboom, de Duve and others set out to analytically fractionate the subcellular components obtained after the fragmentation of liver cells. This approach has become known as subcellular fractionation, and signalled a major conceptual breakthrough in biochemistry (reviewed by de Duve, 1964, 1967, 1971). The significance of this breakthrough has been underlined by the award of the 1974 Nobel Prize in Medicine to de Duve, Palade and Claude. This thesis is concerned with the application of subcellular fractionation techniques to the separation and characterisation of the membrane systems of the rabbit skeletal muscle cell.
Resumo:
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.