978 resultados para muscle potential


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catch-up growth, a risk factor for later obesity, type 2 diabetes, and cardiovascular diseases, is characterized by hyperinsulinemia and an accelerated rate for recovering fat mass, i.e., catch-up fat. To identify potential mechanisms in the link between hyperinsulinemia and catch-up fat during catch-up growth, we studied the in vivo action of insulin on glucose utilization in skeletal muscle and adipose tissue in a previously described rat model of weight recovery exhibiting catch-up fat caused by suppressed thermogenesis per se. To do this, we used euglycemic-hyperinsulinemic clamps associated with the labeled 2-deoxy-glucose technique. After 1 week of isocaloric refeeding, when body fat, circulating free fatty acids, or intramyocellular lipids in refed animals had not yet exceeded those of controls, insulin-stimulated glucose utilization in refed animals was lower in skeletal muscles (by 20–43%) but higher in white adipose tissues (by two- to threefold). Furthermore, fatty acid synthase activity was higher in adipose tissues from refed animals than from fed controls. These results suggest that suppressed thermogenesis for the purpose of sparing glucose for catch-up fat, via the coordinated induction of skeletal muscle insulin resistance and adipose tissue insulin hyperresponsiveness, might be a central event in the link between catch-up growth, hyperinsulinemia and risks for later metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of feeding systems on the levels of functional lipids and other fatty acid concentrations in Australian beef was examined. Rump, strip loin and blade cuts obtained from grass feeding, short-term grain feeding (80 days; STGF) and long-term grain feedlot rations (150-200 days; LTFL) were used in the present study. The typical Australian feedlot ration contains more than 50% barley and/or sorghum and balanced with whole cottonseed and protein meals were used as feed for STGF and LTFL regimens. Meat cuts from 18 cattle for each feeding regimen were trimmed of visible fat and  connective tissue and then minced (300 g lean beef); replicate samples of 7g were used for fatty acid (FA) analysis. There was a significantly higher level of total omega-3 (n-3) and long chain n-3 FA in grass-fed beef (P <0.0001) than the grain-fed groups regardless of cut types. Cuts from STGF beef had significantly reduced levels of n-3 FA and conjugated linoleic acid (CLA) and similar levels of saturated, monounsaturated and n-6 FA compared with grass feeding (P <0.001). Cuts from LTFL beef had higher levels of saturated, monounsaturated, n-6 FA and trans 18:1 than similar  cuts from the other two groups (P <0.01), indicating that increased length of grain feeding was associated with more fat deposited in the carcass. There was a step-wise increase in trans 18:1 content from grass to STGF to LTGF, suggesting grain feeding elevates trans FA in beef, probably because of increased intake of 18:2n-6. Only grass-fed beef reached the target of more than 30mg of long chain n-3 FA/100 g muscle as recommended by Food Standard Australia and New Zealand for a food to be considered a source of omega- 3 fatty acids. The proportions of trans 18:1 and n-6 FA were higher (P<0.001) for both grain-fed beef groups than grass-fed beef. Data from the present study show that grain feeding decreases functional lipid  components (long chain n-3 FA and CLA) in Australian beef regardless of meat cuts, while increasing total trans 18:1 and saturated FA levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary population of skeletal muscle cells expressing the CD34 surface protein can differentiate in vitro into genuine brown adipocytes with a high level of UCP1 expression and uncoupled respiration. These cells can be expanded in culture, and their UCP1 mRNA expression is strongly increased by cell-permeating cAMP derivatives and a peroxisome-proliferator-activated receptor-{gamma} (PPAR{gamma}) agonist. Furthermore, UCP1 mRNA was detected in the skeletal muscle of adult humans, and its expression was increased in vivo by PPAR{gamma} agonist treatment. All the studies concerning UCP1 expression in adult humans have until now been focused on the white adipose tissue. Here we show for the first time the existence in human skeletal muscle and the prospective isolation of progenitor cells with a high potential for UCP1 expression. The discovery of this reservoir generates a new hope of treating obesity by acting on energy dissipation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proinflammatory cytokines, such as tumor necrosis factor (TNF)-{alpha}, contribute to muscle wasting in inflammatory disorders, where TNF{alpha} acts to regulate myogenic genes. Conjugated linoleic acid (CLA) has shown promise as an antiproliferative and antiinflammatory agent, leading to its potential as a therapeutic agent in muscle-wasting disorders. To evaluate the effect of CLA on myogenesis during inflammation, human primary muscle cells were grown in culture and exposed to varying concentrations of TNF{alpha} and the cis-9, trans-11 and trans-10, cis-12 CLA isomers. Expression of myogenic genes (Myf5, MyoD, myogenin, and myostatin) and the functional genes creatine kinase (CK) and myosin heavy chain (MHC IIx) were measured by real-time PCR. TNF{alpha} significantly downregulated MyoD and myogenin expression, whereas it increased Myf5 expression. These changes corresponded with a decrease in both CK and MHC IIx expression. Both isomers of CLA mimicked the inhibitory effect of TNF{alpha} treatment on MyoD and myogenin expression, whereas myostatin expression was diminished in the presence of both isomers of CLA either alone or in combination with TNF{alpha}. Both isomers of CLA decreased CK and MHC IIx expression. These findings demonstrate that TNF{alpha} can have specific regulatory effects on myogenic genes in primary human muscle cells. A postulated antiinflammatory role of CLA in myogenesis appears more complex, with an indication that CLA may have a negative effect on this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective:
Nutrition during critical periods in early life may increase the subsequent risk of obesity, hypertension and metabolic diseases in adulthood. Few studies have focused on the long-term consequences of poor nutrition during the suckling period on the susceptibility to developing obesity when exposed to a palatable cafeteria-style high-fat diet (CD) after weaning.

Design:
This study examined the impact of early undernutrition, followed by CD exposure, on blood pressure, hormones and genes important for insulin sensitivity and metabolism and skeletal muscle mRNA expression of adiponectin receptor 1 (AdipoR1), carnitine palmitoyl-transferase I (CPT-1), cytochrome c oxidase 4 (COX4) and peroxisome proliferator-activated receptor alpha (PPARalpha). Following normal gestation, Sprague–Dawley rat litters were adjusted to 18 (undernourished) or 12 (control) pups. Rats were weaned (day 21) onto either palatable CD or standard chow.

Results:
Early undernourished rats were significantly lighter than control by 17 days, persisting into adulthood only when animals were fed chow after weaning. Regardless of litter size, rats fed CD had doubled fat mass at 15 weeks of age, and significant elevations in plasma leptin, insulin and adiponectin. Importantly, undernutrition confined to the suckling period, elevated circulating adiponectin regardless of post-weaning diet. Blood pressure was reduced in early undernourished rats fed chow, and increased by CD. Early undernutrition was associated with long-term elevations in the expression of AdipoR1, CPT-1, COX4 and PPARalpha in skeletal muscle.

Conclusion:
This study demonstrates the important role of early nutrition on body weight and metabolism, suggesting early undernourishment enhances insulin sensitivity and fatty-acid oxidation. The long-term potential benefit of limiting nutrition in the early postnatal period warrants further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the insecticide, pyriproxyfen on early ovary synthesis was examined in the Gecarcinid land crab, Gecarcoidea natalis. Crabs were fed a mixture of either leaf litter and bait containing 0.5% (wt/wt) pyriproxyfen (experimental groups), or a mixture of leaf litter and a control bait containing no pyriproxyfen (control groups), at simulated baiting doses of 2 kg ha− 1 and 4 kg ha− 1, during the period in which G. natalis synthesises its ovaries. A third group of crabs were fed ad libitum either the bait containing 0.5% Pypriproxyfen or the control bait. Pyriproxyfen affected early ovary development in G. natalis. The ovaries from crabs in the experimental groups at all baiting levels had a higher total nitrogen content and dry mass than the ovaries from crabs in the control groups. Pyriproxyfen affected the histology of the ovaries. Ovaries from animals in the experimental groups were more mature, containing more previtellogenic and early vitellogenic oocytes, of a larger diameter, than the ovaries from crabs in the control groups. Significant amounts of pyriproxyfen accumulated within the midgut gland and ovary, the hypothesised target tissues, while minor amounts of pyriproxyfen was accumulated in the muscle, a hypothesised non target tissue. Pyriproxyfen may have stimulated early ovary development and induced synthesis of yolk protein by mimicking methyl farnesoate and thus causing endocrine disruption. Given this, pyriproxyfen should not be used to control invasive insects in environments where gecarcinid and other land crab species are present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide is a potential regulator of mitochondrial biogenesis. Therefore, we investigated if mice deficient in endothelial nitric oxide synthase (eNOS-/-) or neuronal NOS (nNOS-/-) have attenuated activation of skeletal muscle mitochondrial biogenesis in response to exercise. eNOS-/-, nNOS-/- and C57Bl6 (CON) mice (16.3 ± 0.2 weeks old) either remained in their cages (basal) or ran on a treadmill (16 m min-1, 5 grade) for 60 min (n = 8 per group) and were killed 6 h after exercise. Other eNOS-/-, nNOS-/- and CON mice exercise trained for 9 days (60 min per day) and were killed 24 h after the last bout of exercise training. eNOS-/- mice had significantly higher nNOS protein and nNOS-/- mice had significantly higher eNOS protein in the EDL, but not the soleus. The basal mitochondrial biogenesis markers NRF1, NRF2α and mtTFA mRNA were significantly (P< 0.05) higher in the soleus and EDL of nNOS-/- mice whilst basal citrate synthase activity was higher in the soleus and basal PGC-1α mRNA higher in the EDL. Also, eNOS-/- mice had significantly higher basal citrate synthase activity in the soleus but not the EDL. Acute exercise increased (P< 0.05) PGC-1α mRNA in soleus and EDL and NRF2α mRNA in the EDL to a similar extent in all genotypes. In addition, short-term exercise training significantly increased cytochrome c protein in all genotypes (P< 0.05) in the EDL. In conclusion, eNOS and nNOS are differentially involved in the basal regulation of mitochondrial biogenesis in skeletal muscle but are not critical for exercise-induced increases in mitochondrial biogenesis in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcineurin activation ameliorates the dystrophic pathology of hindlimb muscles in mdx mice and decreases their susceptibility to contraction damage. In mdx mice, the diaphragm is more severely affected than hindlimb muscles and more representative of Duchenne muscular dystrophy. The constitutively active calcineurin A transgene (CnA) was overexpressed in skeletal muscles of mdx (mdx CnA*) mice to test whether muscle morphology and function would be improved. Contractile function of diaphragm strips and extensor digitorum longus and soleus muscles from adult mdx CnA* and mdx mice was examined in vitro. Hindlimb muscles from mdx CnA* mice had a prolonged twitch time course and were more resistant to fatigue. Because of a slower phenotype and a decrease in fiber cross-sectional area, normalized force was lower in fast- and slow-twitch muscles of mdx CnA* than mdx mice. In the diaphragm, despite a slower phenotype and a 35% reduction in fiber size, normalized force was preserved. This was likely mediated by the reduction in the area of the diaphragm undergoing degeneration (i.e., mononuclear cell and connective and adipose tissue infiltration). The proportion of centrally nucleated fibers was reduced in mdx CnA* compared with mdx mice, indicative of improved myofiber viability. In hindlimb muscles of mdx mice, calcineurin activation increased expression of markers of regeneration, particularly developmental myosin heavy chain isoform and myocyte enhancer factor 2A. Thus activation of the calcineurin signal transduction pathway has potential to ameliorate the mdx pathophysiology, especially in the diaphragm, through its effects on muscle degeneration and regeneration and endurance capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to investigate the influence of muscle glycogen concentration on whole body insulin stimulated glucose uptake in humans and to examine the potential signalling mechanisms responsible for enhanced insulin action in the post exercise period. Untrained male subjects were conditioned to achieve a range of muscle glycogen concentrations via acute exercise or a combination of exercise and diet. The influence of muscle glycogen content on whole body insulin stimulated glucose uptake was determined via hyperinsulinaemic / euglycaemic clamps conducted at rest, 30 min after exercise or 24 hours after exercise. Muscle glycogen content did not influence insulin mediated glucose disposal either 30 min or 24 hrs after exercise when compared with basal. Conventional insulin signalling to muscle glucose uptake and signalling through the p38 MAPK cascade was also largely unaltered by glycogen concentration. Muscle glycogen synthesis was significantly increased in heavily but not moderately glycogen depleted muscle 30 min after exercise. Enhanced muscle glycogen synthesis occurred in line with a significant increase in insulin stimulated GSK-3 serine phosphorylation. This finding suggests that enhanced insulin sensitivity of muscle glycogen synthesis following glycogen depleting exercise may be mediated via a pathway involving alterations in insulin stimulated GSK-3 phosphorylation. In summary, whilst glycogen influences insulin mediated GSK-3 phosphorylation and glycogen synthesis, the findings of the present series of investigations suggest that the role of muscle glycogen in the process of insulin stimulated glucose uptake may not be as important as previously theorised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is mounting evidence in support of the view that skeletal muscle hypertrophy results from the complex and coordinated interaction of numerous signalling pathways. Well characterised components integral to skeletal muscle adaptation include the transcriptional activity of the members of the myogenic regulatory factors, numerous secreted peptide growth factors, and the regenerative potential of satellite cells. Whilst studies investigating isolated components or pathways have enhanced our current understanding of skeletal muscle hypertrophy, our knowledge of how all of these components react in concert to a common stimulus remains limited. The broad aim of this thesis was to identify and characterise novel genes involved in skeletal muscle hypertrophy. We have created a customised human skeletal muscle specific microarray which contains ∼11,000 cDNA clones derived from a normalised human skeletal muscle cDNA library as well as 270 genes with known functional roles in human skeletal muscle. The first aspect of this thesis describes the production of the microarray and evaluates the robustness and reproducibility of this analytical technique. Study one aimed to use this microarray in the identification of genes that are differentially expressed during the forced differentiation of human rhabdomyosarcoma cells, an in vitro model of skeletal muscle development. Firstly using this unique model of aberrant myogenic differentiation we aimed to identify genes with previously unidentified roles in myogenesis. Secondly, the data from this study permitted the examination of the performance of the microarray in detecting differential gene expression in a biological system. We identified several new genes with potential roles in the myogenic arrest of rhabdomyosarcoma and further characterised the expression of muscle specific genes in rhabdomyosarcoma differentiation. In study two, the molecular responses of cell cycle regulators, muscle regulatory factors, and atrophy related genes were mapped in response to a single bout of resistance exercise in human skeletal muscle. We demonstrated an increased expression of MyoD, myogenin and p21, whilst the expression of myostatin was decreased. The results of this study contribute to the existing body of knowledge on the molecular regulation skeletal muscle to a hypertrophic stimulus. In study three, the muscle samples collected in study two were analysed using the human skeletal muscle specific microarray for the identification of novel genes with potential roles in the hypertrophic process. The analysis uncovered four interesting genes (TXNIP, MLP, ASB5, FLJ 38973) that have not previously been examined in human skeletal muscle in response to resistance exercise. The functions of these genes and their potential roles in skeletal muscle are discussed. In study four, the four genes identified in study three were examined in human primary skeletal muscle cell cultures during myogenic differentiation. Human primary skeletal muscle cells were derived from the vastus lateralis muscle of 8 healthy volunteers (6 males and 2 females). Cell cultures were differentiated using serum withdrawal and serum withdrawal combined with IGF-1 supplementation. Markers of the cell proliferation, cell cycle arrest and myogenic differentiation were examined to assess the effectiveness of the differentiation stimulus. Additionally, the expressions of TXNIP, MLP, ASB5 and FLJ 38973 measured in an attempt to characterise further their roles in skeletal muscle. The expression of TXNIP changed markedly in response to both differentiation stimuli, whilst the expression of the remaining genes were not altered. Therefore it was suggested that expression of these genes might be responsive to the mechanical strain or contraction induced by the resistance exercise. In order to examine whether these novel genes responded specifically to resistance type exercise, their expression was examined following a single bout of endurance exercise. The expression of TXNIP, MLP, and FLJ 38973 remained unchanged whilst ASB5 increased 30 min following the cessation of the exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes is quickly reaching epidemic proportions, with 216 million people worldwide predicted to be diagnosed with the disease by 2010. While it appears that the expression of the insulin responsive glucose transporter isoform 4 (GLUT4) is not reduced in diabetic populations, overexpression of GLUT4 exclusively in muscle enhances insulin action and improves glucose homeostasis. Consequently, understanding the regulation of GLUT4 expression is considered important in identifying potential therapeutic targets for the treatment and management of insulin resistance and related disorders such as type 2 diabetes. Using transgenic mice, we have identified two conserved regions on the GLUT4 gene promoter that are required for normal skeletal muscle GLUT4 expression. The first region contains a binding site for the myocyte enhancer factor 2 (MEF2) transcription factor, between –464 and –473 bp, and it appears that a MEF2A/D heterodimer binds this sequence. However, this site is not sufficient to support full GLUT4 expression, and another region between –712 and –742 bp, termed Domain 1, is also required. A novel transcription factor, named the GLUT4 enhancer factor (GEF), was found to bind to this region. It appears that MEF2 and GEF physically interact in order to induce GLUT4 expression. A single bout of exercise is sufficient to increase both GLUT4 transcription and mRNA abundance. However, the molecular mechanisms underpinning this response remain largely unexplored, particularly in human skeletal muscle. Therefore, the aim of this study was to determine whether a single, acute bout of exercise increases the DNA-binding activity of both MEF2 and GEF in human skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously demonstrated that well-trained subjects who completed a 3 week training programme in which selected high-intensity interval training (HIT) sessions were commenced with low muscle glycogen content increased the maximal activities of several oxidative enzymes that promote endurance adaptations to a greater extent than subjects who began all training sessions with normal glycogen levels. The aim of the present study was to investigate acute skeletal muscle signalling responses to a single bout of HIT commenced with low or normal muscle glycogen stores in an attempt to elucidate potential mechanism(s) that might underlie our previous observations. Six endurance-trained cyclists/triathletes performed a 100 min ride at ∼70% peak O2 uptake (AT) on day 1 and HIT (8 × 5 min work bouts at maximal self-selected effort with 1 min rest) 24 h later (HIGH). Another six subjects, matched for fitness and training history, performed AT on day 1 then 1–2 h later, HIT (LOW). Muscle biopsies were taken before and after HIT. Muscle glycogen concentration was higher in HIGH versus LOW before the HIT (390 ± 28 versus 256 ± 67 μmol (g dry wt)−1). After HIT, glycogen levels were reduced in both groups (P < 0.05) but HIGH was elevated compared with LOW (229 ± 29 versus 124 ± 41 μmol (g dry wt)−1; P < 0.05). Phosphorylation of 5'AMP-activated protein kinase (AMPK) increased after HIT, but the magnitude of increase was greater in LOW (P < 0.05). Despite the augmented AMPK response in LOW after HIT, selected downstream AMPK substrates were similar between groups. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was unchanged for both groups before and after the HIT training sessions. We conclude that despite a greater activation AMPK phosphorylation when HIT was commenced with low compared with normal muscle glycogen availability, the localization and phosphorylation state of selected downstream targets of AMPK were similar in response to the two interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1.      Skeletal muscle oxidative function and metabolic gene expression are co-ordinately downregulated in metabolic diseases such as insulin resistance, obesity and Type 2 diabetes. Altering skeletal muscle metabolic gene expression to favour enhanced energy expenditure is considered a potential therapy to combat these diseases.

2.      Histone deacetylases (HDACs) are chromatin-remodelling enzymes that repress gene expression. It has been shown that HDAC4 and 5 co-operatively regulate a number of genes involved in various aspects of metabolism. Understanding how HDACs are regulated provides insights into the mechanisms regulating skeletal muscle metabolic gene expression.

3.      Multiple kinases control phosphorylation-dependent nuclear export of HDACs, rendering them unable to repress transcription. We have found a major role for the AMP-activated protein kinase (AMPK) in response to energetic stress, yet metabolic gene expression is maintained in the absence of AMPK activity. Preliminary evidence suggests a potential role for protein kinase D, also a Class IIa HDAC kinase, in this response.

4.      The HDACs are also regulated by ubiquitin-mediated proteasomal degradation, although the exact mediators of this process have not been identified.

5.      Because HDACs appear to be critical regulators of skeletal muscle metabolic gene expression, HDAC inhibition could be an effective therapy to treat metabolic diseases.

6.      Together, these data show that HDAC4 and 5 are critical regulators of metabolic gene expression and that understanding their regulation could provide a number of points of intervention for therapies designed to treat metabolic diseases, such as insulin resistance, obesity and Type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing the number of glucose transporters in muscle ameliorates many of the symptoms associated with type 2 diabetes. This thesis identifies mechanisms regulating glucose transporter gene expression, and therefore glucose transporter number, in human skeletal muscle and provides potential targets for the treatment and management of type 2 diabetes.