802 resultados para multiple linear regression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Health-related quality of life (HRQoL) is an important outcome for patients diagnosed with coronary heart disease. This report describes predictors of physical and mental HRQoL at six months post-hospitalisation for myocardial infarction. Methods Participants were myocardial infarction patients (n=430) admitted to two tertiary referral centres in Brisbane, Australia who completed a six month coronary heart disease secondary prevention trial (ProActive Heart). Outcome variables were HRQoL (Short Form-36) at six months, including a physical and mental summary score. Baseline predictors included demographics and clinical variables, health behaviours, and psychosocial variables. Stepwise forward multiple linear regression analyses were used to identify significant independent predictors of six month HRQoL. Results Physical HRQoL was lower in participants who: were older (p<0.001); were unemployed (p=0.03); had lower baseline physical and mental HRQoL scores (p<0.001); had lower confidence levels in meeting sufficient physical activity recommendations (p<0.001); had no intention to be physically active in the next six months (p<0.001); and were more sedentary (p=0.001). Mental HRQoL was lower in participants who: were younger (p=0.01); had lower baseline mental HRQoL (p<0.001); were more sedentary (p=0.01) were depressed (p<0.001); and had lower social support (p=0.001). Conclusions This study has clinical implications as identification of indicators of lower physical and mental HRQoL outcomes for myocardial infarction patients allows for targeted counselling or coronary heart disease secondary prevention efforts. Trial registration Australian Clinical Trials Registry, Australian New Zealand Clinical Trials Registry, CTRN12607000595415. Keywords: Myocardial infarction; Secondary prevention; Cardiac rehabilitation; Telephone-delivered; Health-related quality of life; Health coaching; Tele-health

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To investigate the impact of new-onset diabetic ketoacidosis (DKA) during child- hood on brain morphology and function. RESEARCH DESIGN AND METHODS Patients aged 6–18 years with and without DKA at diagnosis were studied at four time points: <48 h, 5 days, 28 days, and 6 months postdiagnosis. Patients under- went magnetic resonance imaging (MRI) and spectroscopy with cognitive assess- ment at each time point. Relationships between clinical characteristics at presentation and MRI and neurologic outcomes were examined using multiple linear regression, repeated-measures, and ANCOVA analyses. RESULTS Thirty-six DKA and 59 non-DKA patients were recruited between 2004 and 2009. With DKA, cerebral white matter showed the greatest alterations with increased total white matter volume and higher mean diffusivity in the frontal, temporal, and parietal white matter. Total white matter volume decreased over the first 6 months. For gray matter in DKA patients, total volume was lower at baseline and increased over 6 months. Lower levels of N-acetylaspartate were noted at base- line in the frontal gray matter and basal ganglia. Mental state scores were lower at baseline and at 5 days. Of note, although changes in total and regional brain volumes over the first 5 days resolved, they were associated with poorer delayed memory recall and poorer sustained and divided attention at 6 months. Age at time of presentation and pH level were predictors of neuroimaging and functional outcomes. CONCLUSIONS DKA at type 1 diabetes diagnosis results in morphologic and functional brain changes. These changes are associated with adverse neurocognitive outcomes in the medium term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food neophobia is a highly heritable trait characterized by the rejection of foods that are novel or unknown and potentially limits dietary variety, with lower intake and preference particularly for fruits and vegetables. Understanding non-genetic (environmental) factors that may influence the expression of food neophobia is essential to improving children’s consumption of fruits and vegetables and encouraging the adoption of healthier diets. The aim of this study was to examine whether maternal infant feeding beliefs (at four months) were associated with the expression of food neophobia in toddlers and whether controlling feeding practices mediated this relationship. Participants were 244 first-time mothers (M = 30.4, SD = 5.1 years) allocated to the control group of the NOURISH randomized controlled trial. The relationships between infant feeding beliefs (Infant Feeding Questionnaire) at four months and controlling child feeding practices (Child Feeding Questionnaire) and food neophobia (Child Food Neophobia Scale) at 24 months were tested using correlational and multiple linear regression models (adjusted for significant covariates). Higher maternal Concern about infant under-eating and becoming underweight at four months was associated with higher child food neophobia at two years. Similarly, lower Awareness of infant hunger and satiety cues was associated with higher child food neophobia. Both associations were significantly mediated by mothers’ use of Pressure to eat. Intervening early to promote positive feeding practices to mothers may help reduce the use of controlling practices as children develop. Further research that can further elucidate the bi-directional nature of the mother-child feeding relationship is still required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explores how explicit transit quality of services (TQoS) measures including service frequency, service span, and travel time ratio, along with implicit environmental predictors such as topographic grade factor influence bus ridership using a case study city of Brisbane, Australia. The primary hypothesis tested was that bus ridership is higher within suburbs with high transit quality of service than suburbs that have limited service quality. Using Multiple Linear Regression (MLR) this study identifies a strong positive relationship between route intensity (bus-km/h-km2) and bus ridership, indicating that increasing both service frequency and spatial route density correspond to higher bus ridership. Additionally, travel time ratio (in-vehicle transit travel time to in-vehicle auto travel time) is also found to have significant negative association with ridership within a suburb, reflecting a decline in transit use with increased travel time ratio. Conversely, topographic grade and service span are not found to exert any significant impact on bus ridership in a suburb. Our study findings enhance the fundamental understanding of traveller behaviour which is informative to urban transportation policy, planning and provision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates whether an Australian city’s suburbs having high transit Quality of Service (QoS) are associated with higher transit ridership than those having low transit QoS •We explore how QoS measures including service frequency, service span, service coverage, and travel time ratio, along with implicit environmental predictors such as topographic grade factor influence bus ridership •We applied Multiple Linear Regression (MLR) to examine the relationship between QoS and ridership •Its outcomes enhance our understanding of transit user behavior, which is informative to urban transportation policy, planning, and provision

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Improved survival for men with prostate cancer has led to increased attention to factors influencing quality of life (QOL). As protein levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) have been reported to be associated with QOL in people with cancer, we sought to identify whether single-nucleotide polymorphisms (SNPs) of these genes were associated with QOL in men with prostate cancer. Methods Multiple linear regression of two data sets (including approximately 750 men newly diagnosed with prostate cancer and 550 men from the general population) was used to investigate SNPs of VEGF and IGF-1 (10 SNPs in total) for associations with QOL (measured by the SF-36v2 health survey). Results Men with prostate cancer who carried the minor ‘T’ allele for IGF-1 SNP rs35767 had higher mean Role-Physical scale scores (≥0.3 SD) compared to non-carriers (p < 0.05). While this association was not identified in men from the general population, one IGF-1 SNP rs7965399 was associated with higher mean Bodily Pain scale scores in men from the general population that was not found in men with prostate cancer. Men from the general population who carried the rare ‘C’ allele had higher mean Bodily Pain scale scores (≥0.3 SD) than non-carriers (p < 0.05). Conclusions Through identifying SNPs that are associated with QOL in men with prostate cancer and men from the general population, this study adds to the mapping of complex interrelationships that influence QOL and suggests a role for IGF-I in physical QOL outcomes. Future research may identify biomarkers associated with increased risk of poor QOL that could assist in the provision of pre-emptive support for those identified at risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of aerosol particle number size distributions (15-700 nm), CO and NOx were performed in a bus tunnel, Australia. Daily mean particle size distributions of mixed diesel/CNG (Compressed Natural Gas) buses traffic flow were determined in 4 consecutive measurement days. EFs (Emission Factors) of Particle size distribution of diesel buses and CNG buses were obtained by MLR (Multiple Linear Regression) methods, particle distributions of diesel buses and CNG buses were observed as single accumulation mode and nuclei-mode separately. Particle size distributions of mixed traffic flow were decomposed by two log-normal fitting curves for each 30 minutes interval mean scans, all the mix fleet PSD emission can be well fitted by the summation of two log-normal distribution curves, and these were composed of nuclei mode curve and accumulation curve, which were affirmed as the CNG buses and diesel buses PN emission curves respectively. Finally, particle size distributions of diesel buses and CNG buses were quantified by statistical whisker-box charts. For log-normal particle size distribution of diesel buses, accumulation mode diameters were 74.5~87.5nm, geometric standard deviations were 1.89~1.98. As to log-normal particle size distribution of CNG buses, nuclei-mode diameters were 21~24 nm, geometric standard deviations were 1.27~1.31.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluctuations in transit ridership pattern over the year have always concerned transport planners, operators and researchers. Predominantly, metrological elements have been specified to explain variability in ridership volume. However, the outcome of this research points to new direction to explain ridership fluctuation in Brisbane. It explored the relationship between daily bus ridership, seasonality and weather variables for a one-year period, 2012. Rather than segregating the entire year’s ridership into the four calendar seasons (summer, autumn, spring, and winter), this analysis distributed the yearly ridership into nine complex seasonality blocks. These represent calendar season, school/university (academic) period and their corresponding holidays, as well as other observant holidays such as Christmas. The dominance of complex seasonality over typical calendar season was established through analysis and using Multiple Linear Regression (MLR). This research identified a very strong association between complex seasonality and bus ridership. Furthermore, an expectation that Brisbane’s subtropical summer is unfavourable to transit usage was not supported by the findings of this study. A nil association of precipitation and temperature was observed in this region. Finally, this research developed a ridership estimation model, capable of predicting daily ridership within very limited error range. Following the application of this developed model, the estimated annual time series data of each suburb was analysed using Fourier Transformation to appreciate whether any cyclical effects remained, compared with the original data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of near infra-red (NIR) spectroscopy for non-invasive measurement of fruit quality of pineapple (Ananas comosus var. Smooth Cayenne) and mango (Magnifera indica var. Kensington) fruit was assessed. A remote reflectance fibre optic probe, placed in contact with the fruit skin surface in a light-proof box, was used to deliver monochromatic light to the fruit, and to collect NIR reflectance spectra (760–2500 nm). The probe illuminated and collected reflected radiation from an area of about 16 cm2. The NIR spectral attributes were correlated with pineapple juice Brix and with mango flesh dry matter (DM) measured from fruit flesh directly underlying the scanned area. The highest correlations for both fruit were found using the second derivative of the spectra (d2 log 1/R) and an additive calibration equation. Multiple linear regression (MLR) on pineapple fruit spectra (n = 85) gave a calibration equation using d2 log 1/R at wavelengths of 866, 760, 1232 and 832 nm with a multiple coefficient of determination (R2) of 0.75, and a standard error of calibration (SEC) of 1.21 °Brix. Modified partial least squares (MPLS) regression analysis yielded a calibration equation with R2 = 0.91, SEC = 0.69, and a standard error of cross validation (SECV) of 1.09 oBrix. For mango, MLR gave a calibration equation using d2 log 1/R at 904, 872, 1660 and 1516 nm with R2 = 0.90, and SEC = 0.85% DM and a bias of 0.39. Using MPLS analysis, a calibration equation with R2 = 0.98, SEC = 0.54 and SECV = 1.19 was obtained. We conclude that NIR technology offers the potential to assess fruit sweetness in intact whole pineapple and DM in mango fruit, respectively, to within 1° Brix and 1% DM, and could be used for the grading of fruit in fruit packing sheds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soluble solids content of intact fruit can be measured non-invasively by near infrared spectroscopy, allowing “sweetness” grading of individual fruit. However, little information is available in the literature with respect to the robustness of such calibrations. We developed calibrations based on a restricted wavelength range (700–1100 nm), suitable for use with low-cost silicon detector systems, using a stepwise multiple linear regression routine. Calibrations for total soluble solids (°Brix) in intact pineapple fruit were not transferable between summer and winter growing seasons. A combined calibration (data of three harvest dates) validated reasonably well against a population set drawn from all harvest dates (r2 = 0.72, SEP = 1.84 °Brix). Calibrations for Brix in melon were transferable between two of the three varieties examined. However, a lack of robustness of calibration was indicated by poor validation within populations of fruit harvested at different times. Further work is planned to investigate the robustness of calibration across varieties, growing districts and seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictive models based on near infra-red spectroscopy for the assessment of fruit internal quality attributes must exhibit a degree of robustness across the parameters of variety, district and time to be of practical use in fruit grading. At the time this thesis was initiated, while there were a number of published reports on the development of near infra-red based calibration models for the assessment of internal quality attributes of intact fruit, there were no reports of the reliability ("robustness") of such models across time, cultivars or growing regions. As existing published reports varied in instrumentation employed, a re-analysis of existing data was not possible. An instrument platform, based on partial transmittance optics, a halogen light source and (Zeiss MMS 1) detector operating in the short wavelength near infra-red region was developed for use in the assessment of intact fruit. This platform was used to assess populations of macadamia kernels, melons and mandarin fruit for total soluble solids, dry matter and oil concentration. Calibration procedures were optimised and robustness assessed across growing areas, time of harvest, season and variety. In general, global modified partial least squares regression (MPLS) calibration models based on derivatised absorbance data were better than either multiple linear regression or `local' MPLS models in the prediction of independent validation populations . Robustness was most affected by growing season, relative to the growing district or variety . Various calibration updating procedures were evaluated in terms of calibration robustness. Random selection of samples from the validation population for addition to the calibration population was equivalent to or better than other methods of sample addition (methods based on the Mahalanobis distance of samples from either the centroid of the population or neighbourhood samples). In these exercises the global Mahalanobis distance (GH) was calculated using the scores and loadings from the calibration population on the independent validation population. In practice, it is recommended that model predictive performance be monitored in terms of predicted sample GH, with model updating using as few as 10 samples from the new population undertaken when the average GH value exceeds 1 .0 .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the association of cord blood 25-hydroxyvitamin D [25(OH)D] with birth weight and the risk of small for gestational age (SGA). As part of the China-Anhui Birth Cohort (C-ABC) study, we measured cord blood levels of 25(OH)D in 1491 neonates in Hefei, China. The data on maternal sociodemographic characteristics, health status, lifestyle, birth outcomes were prospectively collected. Multiple regression models were used to estimate the association of 25(OH)D levels with birth weight and the risk of SGA. Compared with neonates in the lowest decile of cord blood 25(OH)D levels, neonates in four deciles (the fourth, fifth, sixth and seventh deciles) had significantly increased birth weight and decreased risk of SGA. Multiple linear regression models showed that per 10 nmol/L increase in cord blood 25(OH)D, birth weight increased by 61.0 g (95% CI: 31.9, 89.9) at concentrations less than 40 nmol/L, and then decreased by 68.5 g (95% CI: −110.5, −26.6) at concentrations from 40 to 70 nmol/L. This study provides the first epidemiological evidence that there was an inverted U shaped relationship between neonatal vitamin D status and fetal growth, and the risk of SGA reduced at moderate concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen cyanide (HCN) is a toxic chemical that can potentially cause mild to severe reactions in animals when grazing forage sorghum. Developing technologies to monitor the level of HCN in the growing crop would benefit graziers, so that they can move cattle into paddocks with acceptable levels of HCN. In this study, we developed near-infrared spectroscopy (MRS) calibrations to estimate HCN in forage sorghum and hay. The full spectral NIRS range (400-2498 nm) was used as well as specific spectral ranges within the full spectral range, i.e., visible (400-750 nm), shortwave (800-1100 nm) and near-infrared (NIR) (1100-2498 nm). Using the full spectrum approach and partial least-squares (PLS), the calibration produced a coefficient of determination (R-2) = 0.838 and standard error of cross-validation (SECV) = 0.040%, while the validation set had a R-2 = 0.824 with a low standard error of prediction (SEP = 0.047%). When using a multiple linear regression (MLR) approach, the best model (NIR spectra) produced a R-2 = 0.847 and standard error of calibration (SEC) = 0.050% and a R-2 = 0.829 and SEP = 0.057% for the validation set. The MLR models built from these spectral regions all used nine wavelengths. Two specific wavelengths 2034 and 2458 nm were of interest, with the former associated with C=O carbonyl stretch and the latter associated with C-N-C stretching. The most accurate PLS and MLR models produced a ratio of standard error of prediction to standard deviation of 3.4 and 3.0, respectively, suggesting that the calibrations could be used for screening breeding material. The results indicated that it should be feasible to develop calibrations using PLS or MLR models for a number of users, including breeding programs to screen for genotypes with low HCN, as well as graziers to monitor crop status to help with grazing efficiency.