972 resultados para motor nerve conduction velocity
Resumo:
Studies of the effect of ethanol on human visual evoked potentials are rare and usually involve chronic alcoholic patients. The effect of acute ethanol ingestion has seldom been investigated. We have studied the effect of acute alcoholic poisoning on pattern-reversal visual evoked potentials (PR-VEP) and flash light visual evoked potentials (F-VEP) in 20 normal volunteers. We observed different effects with ethanol: statistically significant prolonged latencies of F-VEP after ingestion, and no significant differences in the latencies of the PR-VEP components. We hypothesize a selective ethanol effect on the afferent transmission of rods, mainly dependent on GABA and glutamatergic neurotransmission, influencing F-VEP latencies, and no effect on cone afferent transmission, as alcohol doesn't influence PR-VEP latencies.
Resumo:
The clinical and histopathological effects of two alcoholic neurolytics were studied in horses. Normal horses were shod with a designed shoe adaptted with 5 screws to produce solar pain. After gait and lameness score analysis, the palmar nerve of 5 horses was injected with 5 ml of 0,75% benzyl alcohol (Group A) and 5 horses were injected with 5 ml of absolute ethyl alcohol (Group B). The animals were submitted to regular lameness evaluation and solar sensibility tests during next six months. The solar sensitivity returned 5 months latter in the group injected with benzyl alcohol 0,75%, while in the group injected with absolute ethyl alcohol, the sole was still desensitized 6 months latter. The histopathological findings showed that the nerve injected with benzyl alcohol 0,75%, resulted in axonotmesis, characterized by axonal nerve degeneration, with possibilities for the nerve conduction recovery. The perineural injection of ethyl alcohol absolute, resulted in neurotmesis with difficult nerve regeneration. It was concluded that chemical neurolysis with alcohol is an option for temporary or permanent nerve blocks in horses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. In conscious or anesthetized rats, moxonidine (2.5 and 5. nmol/50. nl) injected into the commNTS reduced MAP, HR and sSNA. The injection of moxonidine into the commNTS also elicited a reduction of 28% in the activity of sympathoexcitatory vasomotor neurons of the RVLM. To further assess the notion that moxonidine could act in another brainstem area to elicit the antihypertensive effects, a group with electrolytic lesions of the commNTS or sham and with stainless steel guide-cannulas implanted into the 4th V were used. In the sham group, moxonidine (20. nmol/1. μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1. day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity. © 2013 IBRO.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
This paper presents a design and construct the system of data acquisition with wireless transmission of some important parameters like motor temperature, motor rotation and velocity of Unesp Racing´s formula car prototype from Universidade Estadual Paulista, Campus Guaratinguetá. This system development presents a contribution for the electrical technical features adding important points in the competition due car´s electric, in addition, enables preventive maintenance and fine adjustment of the car with the data obtained during training and racing
Resumo:
The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A(2A) receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [H-3]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A(2A) receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (03 mM)-induced transmitter release facilitation, because its effect was prevented by the A(2A) receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M-1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M-2 and Al receptors blocked by methoctramine (0.1 mu M) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A(2A) receptors by endogenous adenosine leading to synaptic vesicle redistribution. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Summary: Neuropathic pain (NP) is a well-recognized feature of leprosy neuropathy. However, the diagnosis of NP is difficult using only clinical criteria. In the study reported here, by means of conventional nerve conduction studies, the authors sought for an association between long-latency responses and NP complaints in leprosy patients with type 1 and 2 reactions. Of the 27 ulnar nerves of leprosy patients, 18 with type 1 reaction (T1R) and 9 with type 2 reaction (T2R) were followed-up for 6 months before and after steroid treatment. Clinical characteristics of pain complaints and clinical function were assessed, as well as the presence of F- and A-waves of the ulnar nerve using nerve conduction studies. The clinical and the neurophysiologic findings were compared to note positive concordances (presence of NP and A-waves together) and negative concordances (absence of NP and A-waves together) before and after treatment. Both reactions presented a high frequency of A-waves (61.1% in T1R and 66.7% in T2R, P < 0.05) and prolonged F-waves (69.4% in T1R and 65.8% in T2R, P = 0.4). No concordances were seen between pain complaints and F-waves. However, significant concordances between NP and A-waves were observed, although restricted to the T2R group ([chi]2 = 5.65, P = 0.04). After treatment, there was a significant reduction in pain complaints, as well as the presence of F- and A-waves in both groups (P < 0.05 for all comparisons). In conclusion, the presence of A-waves correlates well with pain complaints of neuropathic characteristics in leprosy patients, especially in those with type 2 reaction. Probably, such response shares similar mechanisms with the small-fiber dysfunction seen in these patients with NP, such as demyelination, intraneural edema, and axonal sprouting. Further studies using specific tools for small-fiber assessment are warranted to confirm our findings.
Resumo:
[EN] OBJECTIVE: Our hypothesis is that sonography performed by the rheumatologist in patients with suspected carpal tunnel syndrome (CTS) has higher diagnostic value compared to physical evaluation. METHODS: Adult patients with suspected idiopathic CTS, defined by sensory symptoms over the distribution of the median nerve with or without positive results with the Phalen and/or the Tinel's maneuvers were included. The diagnosis of CTS was indicated by typical symptoms daily for at least 3 months and a positive nerve conduction study. One rheumatologist unaware of the clinical and electrodiagnostic results performed an ultrasound examination of the median nerve for the area ranging from the inlet to the outlet of the carpal tunnel. Mean cross-sectional area at each level, flattening ratio and bowing of flexor retinaculum were obtained. RESULTS: Sixty-eight patients with 105 affected wrists were examined. Tinel's and Phalen's signs had a closer sensitivity (73% and 67% respectively) and specificity (40% and 30% respectively). The best swelling nerve cut-off by sonography was 9.7 mm2 at the tunnel inlet, with a sensitivity of 86%, a specificity of 48% and accuracy of 77%. A 100% positive predictive value was reached with a cross-sectional area of 13 mm2, involving 33 hands (31% of the whole sample). Maximal cross sectional area and the measurement of flexor retinaculum had an accuracy of 72% and 73% respectively. Combination of physical maneuvers and sonography not yielded more accuracy than cross-sectional area itself. CONCLUSION: In patients with clinical history of idiopathic CTS and positive nerve conduction study, sonography performed by the rheumatologist has higher diagnostic value than physical maneuvers.
Resumo:
OBIETTIVI: Per esplorare il contributo dei fattori di rischio biomeccanico, ripetitività (hand activity level – HAL) e forza manuale (peak force - PF), nell’insorgenza della sindrome del tunnel carpale (STC), abbiamo studiato un’ampia coorte di lavoratori dell’industria, utilizzando come riferimento il valore limite di soglia (TLV©) dell’American Conference of Governmental Industrial Hygienists (ACGIH). METODI: La coorte è stata osservata dal 2000 al 2011. Abbiamo classificato l’esposizione professionale rispetto al limite di azione (AL) e al TLV dell’ACGIH in: “accettabile” (sotto AL), “intermedia” (tra AL e TLV) e “inaccettabile” (sopra TLV). Abbiamo considerato due definizioni di caso: 1) sintomi di STC; 2) sintomi e positività allo studio di conduzione nervosa (SCN). Abbiamo applicato modelli di regressione di Poisson aggiustati per sesso, età, indice di massa corporea e presenza di patologie predisponenti la malattia. RISULTATI: Nell’intera coorte (1710 lavoratori) abbiamo trovato un tasso di incidenza (IR) di sintomi di STC di 4.1 per 100 anni-persona; un IR di STC confermata dallo SCN di 1.3 per 100 anni-persona. Gli esposti “sopra TLV” presentano un rischio di sviluppare sintomi di STC di 1.76 rispetto agli esposti “sotto AL”. Un andamento simile è emerso per la seconda definizione di caso [incidence rate ratios (IRR) “sopra TLV”, 1.37 (intervallo di confidenza al 95% (IC95%) 0.84–2.23)]. Gli esposti a “carico intermedio” risultano a maggior rischio per la STC [IRR per i sintomi, 3.31 (IC95% 2.39–4.59); IRR per sintomi e SCN positivo, 2.56 (IC95% 1.47–4.43)]. Abbiamo osservato una maggior forza di associazione tra HAL e la STC. CONCLUSIONI: Abbiamo trovato un aumento di rischio di sviluppare la STC all’aumentare del carico biomeccanico: l’aumento di rischio osservato già per gli esposti a “carico intermedio” suggerisce che gli attuali valori limite potrebbero non essere sufficientemente protettivi per alcuni lavoratori. Interventi di prevenzione vanno orientati verso attività manuali ripetitive.
Resumo:
Im zentralen Nervensystem (ZNS) myelinisieren Oligodendrozyten neuronale Axone, indem sie ihre Zellfortsätze mehrfach um axonale Segmente wickeln. Die Ausbildung dieser multilamellaren Membranstapel ermöglicht eine saltatorische und damit rasche und energie-effiziente Erregungsleitung (Nave, 2010). Eine Schädigung des Myelins beeinträchtigt die Reizweiterleitung und führt zur Degeneration der Axone, wie es zum Beispiel bei der Multiplen Sklerose der Fall ist. Das Myelin basische Protein (MBP) ist ein Hauptbestandteil des Myelin und ist essentiell für die Kompaktierung der Myelinmembran (Wood et al., 1984). Die MBP mRNA wird in hnRNP A2 enthaltenen RNA Granulen in einem translations-inaktiven Zustand zu den distalen Fortsätzen transportiert. Vermittelt durch axonale Signale wird nach axo-glialem Kontakt die Translation von MBP ermöglicht (White et al., 2008). Der genaue Mechanismus der differentiellen Genregulation des MBP Proteins ist bisher nur unzureichend aufgeklärt. In der vorliegenden Arbeit konnte eine kleine regulatorische RNA (sncRNA) identifiziert werden, welche über die seed Region mit der MBP mRNA interagieren und die Translation regulieren kann. In primären Oligodendrozyten führt die Überexpression der sncRNA-715 zu reduzierten MBP Protein Mengen und die Blockierung der endogenen sncRNA-715 führt zu einer gesteigerten MBP Synthese. Interessanterweise korreliert während der Differenzierung der Oligodendrozyten in vitro und in vivo die Synthese des MBP Proteins invers mit der Expression der sncRNA-715. In Oligodendrozyten beeinflusst eine experimentell erhöhte sncRNA-715 Menge die Zellmorphologie und induziert Apoptose. Weiterhin ist sncRNA-715 in zytoplasmatischen granulären Strukturen lokalisiert und assoziiert mit MBP mRNA in hnRNP A2 Transport- Granula. Diese Ergebnisse lassen vermuten, dass sncRNA-715 ein Bestandteil der hnRNP A2 Granula sein könnte und dort spezifisch die Translation der MBP mRNA während des Lokalisationsprozesses inhibiert. In chronischen MS Läsionen sind Olig2+-Zellen zu finden. Obwohl die MBP mRNA in diesen Läsionen nachzuweisen ist, kann kein Protein synthetisiert werden. In dieser Arbeit konnte gezeigt werden, dass in diesen Läsionen die Expression der sncRNA-715 erhöht ist. SncRNA-715 könnte die Translation von MBP verhindern und folglich als Inhibitor der Remyelinisierung während des Krankheitsverlaufs fungieren. Schwann-Zellen sind die myelinisierenden Zellen im peripheren Nervensystem (PNS). Im Zuge der Myelinisierung wird die MBP mRNA in diesen Gliazellen ebenfalls in die distalen Fortsätze transportiert und dort lokal translatiert und in die Myelinmembran eingebaut (Trapp et al., 1987). Im Gegensatz zum ZNS ist im PNS nur wenig über den Transportmechanismus der mRNA bekannt (Masaki, 2012). Es ist es sehr wahrscheinlich, dass in Schwann-Zellen und Oligodendrozyten die Lokalisation und die translationale Hemmung der MBP mRNA ähnlichen Mechanismen unterliegen. In der vorliegenden Arbeit konnte gezeigt werden, dass hnRNP A2 und sncRNA-715 in Schwann-Zellen exprimiert werden und in zytoplasmatischen Granula-ähnlichen Strukturen lokalisiert sind. Während der Differenzierung dieser Gliazellen in vivo und in vitro korreliert die Expression der sncRNA-715 invers mit der Synthese des MBP Proteins. HnRNP A2 und sncRNA-715 scheinen in Schwann-Zellen assoziiert zu sein und könnten wie in Oligodendrozyten den Transport der MBP mRNA vermitteln.
Resumo:
In the CNS, myelinating oligodendrocytes and axons form a functional unit based on intimate cell-cell interactions. In addition to axonal insulation serving to increase the conduction velocity of electrical impulses, oligodendrocytes provide trophic support to neurons essential for the long-term functional integrity of axons. The glial signals maintaining axonal functions are just at the beginning to become uncovered. Yet, their determination is highly relevant for all types of demyelinating diseases, where lack of glial support significantly contributes to pathology. rnThe present PhD thesis uncovers exosomes as a novel signaling entity in the CNS by which cargo can be transferred from oligodendrocytes to neurons. Exosomes are small membranous vesicles of endocytic origin, which are released by almost every cell type and have been implicated in intercellular communication. Oligodendrocytes secrete exosomes containing a distinct set of proteins as well as mRNA and microRNA. Intriguingly, oligodendroglial exosome release is stimulated by the neurotransmitter glutamate indicating that neuronal electrical activity controls glial exosome release. In this study, the role of exosomes in neuron-glia communication and their implications on glial support was examined. Cortical neurons internalized and accumulated oligodendroglial exosomes in the neuronal cell soma in a time-dependent manner. Moreover, uptake occurred likewise at the somatodendritic and axonal compartment of the neurons via dynamin and clathrin dependent endocytosis. Intriguingly, neuronal internalization of exosomes resulted in functional retrieval of exosomal cargo in vitro and in vivo upon stereotactic injection of Cre recombinase bearing exosomes. Functional recovery of Cre recombinase from transferred exosomes was indicated by acquired reporter recombination in the target cell. Electrophysiological analysis showed an increased firing rate in neurons exposed to oligodendroglial exosomes. Moreover, microarray analysis revealed differentially expressed genes after exosome treatment, indicating functional implications on neuronal gene expression and activity. rnTaken together, the results of this PhD thesis represent a proof of principle for exosome transmission from oligodendrocytes to neurons suggesting a new route of horizontal transfer in the CNS.rn
Resumo:
Background: Among grape skin polyphenols, trans-resveratrol (RES) has been reported to slow the development of cardiac fibrosis and to affect myofibroblast (MFB) differentiation. Because MFBs induce slow conduction and ectopic activity following heterocellular gap junctional coupling to cardiomyocytes, we investigated whether RES and its main metabolites affect arrhythmogenic cardiomyocyte-MFB interactions. Methods: Experiments were performed with patterned growth strands of neonatal rat ventricular cardiomyocytes coated with cardiac MFBs. Impulse propagation characteristics were measured optically using voltage-sensitive dyes. Long-term video recordings served to characterize drug-related effects on ectopic activity. Data are given as means ± S.D. (n = 4–20). Results: Exposure of pure cardiomyocyte strands to RES at concentrations up to 10 µmol/L had no significant effects on impulse conduction velocity (θ) and maximal action potential upstroke velocities (dV/dtmax). By contrast, in MFB-coated strands exhibiting slow conduction, RES enhanced θ with an EC50 of ~10 nmol/L from 226 ± 38 to 344 ± 24 mm/s and dV/dtmax from 48 ± 7 to 69 ± 2%APA/ms, i.e., to values of pure cardiomyocyte strands (347 ± 33 mm/s; 75 ± 4%APA/ms). Moreover, RES led to a reduction of ectopic activity over the course of several hours in heterocellular preparations. RES is metabolized quickly in the body; therefore, we tested the main known metabolites for functional effects and found them similarly effective in normalizing conduction with EC50s of ~10 nmol/L (3-OH-RES), ~20 nmol/L (RES-3-O-β-glucuronide) and ~10 nmol/L (RES-sulfate), respectively. At these concentrations, neither RES nor its metabolites had any effects on MFB morphology and α-smooth muscle actin expression. This suggests that the antiarrhythmic effects observed were based on mechanisms different from a change in MFB phenotype. Conclusions: The results demonstrate that RES counteracts MFB-dependent arrhythmogenic slow conduction and ectopic activity at physiologically relevant concentrations. Because RES is rapidly metabolized following intestinal absorption, the finding of equal antiarrhythmic effectiveness of the main RES metabolites warrants their inclusion in future studies of potentially beneficial effects of these substances on the heart.
Resumo:
Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.
Resumo:
The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.