995 resultados para mobile sensors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este Proyecto de Fin de Carrera presenta un prototipo de aplicación móvil híbrida multi-plataforma para Android y iOS. Las aplicaciones móviles híbridas son una combinación de aplicaciones web móviles y aplicaciones móviles nativas. Se desarrollan parcialmente con tecnologías web y pueden acceder a la capa nativa y sensores del teléfono. Para el usuario se presentan como aplicaciones nativas, ya que se pueden descargar de las tiendas de aplicaciones y son instaladas en el dispositivo. El prototipo consiste en la migración del módulo de noticias financieras de las aplicaciones actuales para móviles de una compañía bancaria reimplementándolo como aplicación híbrida utilizando uno de los entornos de desarrollo disponibles en el mercado para este propósito. El desarrollo de aplicaciones híbridas puede ahorrar tiempo y dinero cuando se pretende alcanzar más de una plataforma móvil. El objetivo es la evaluación de las ventajas e inconvenientes que ofrece el desarrollo de aplicaciones híbridas en términos de reducción de costes, tiempo de desarrollo y resultado final de la aplicación. El proyecto consta de varias fases. Durante la primera fase se realiza un estudio sobre las aplicaciones híbridas que podemos encontrar hoy en día en el mercado utilizando los ejemplos de linkedIn, Facebook y Financial times. Se hace hincapié en las tecnologías utilizadas, uso de la red móvil y problemas encontrados. Posteriormente se realiza una comparación de distintos entornos de desarrollo multi-plataforma para aplicaciones híbridas en términos de la estrategia utilizada, plataformas soportadas, lenguajes de programación, acceso a capacidades nativas de los dispositivos y licencias de uso. Esta primera fase da como resultado la elección del entorno de desarrollo más adecuado a las exigencias del proyecto, que es PhoneGap, y continua con un análisis más detallado de dicho entorno en cuanto a su arquitectura, características y componentes. La siguiente fase comienza con un estudio de las aplicaciones actuales de la compañía para extraer el código fuente necesario y adaptarlo a la arquitectura que tendrá la aplicación. Para la realización del prototipo se hace uso de la característica que ofrece PhoneGap para acceder a la capa nativa del dispositivo, esto es, el uso de plugins. Se diseña y desarrolla un plugin que permite acceder a la capa nativa para cada plataforma. Una vez desarrollado el prototipo para la plataforma Android, se migra y adapta para la plataforma iOS. Por último se hace una evaluación de los prototipos en cuanto a su facilidad y tiempo de desarrollo, rendimiento, funcionalidad y apariencia de la interfaz de usuario. ABSTRACT. This bachelor's thesis presents a prototype of a hybrid cross-platform mobile application for Android and iOS. Hybrid mobile applications are a combination of mobile web and mobile native applications. They are built partially with web technologies and they can also access native features and sensors of the device. For a user, they look like native applications as they are downloaded from the application stores and installed on the device. This prototype consists of the migration of the financial news module of current mobile applications from a financial bank reimplementing them as a hybrid application using one of the frameworks available in the market for that purpose. Development of applications on a hybrid way can help reducing costs and effort when targeting more than one platform. The target of the project is the evaluation of the advantages and disadvantages that hybrid development can offer in terms of reducing costs and efforts and the final result of the application. The project starts with an analysis of successfully released hybrid applications using the examples of linkedIn, Facebook and Financial Times, emphasizing the different used technologies, the transmitted network data and the encountered problems during the development. This analysis is followed by a comparison of most popular hybrid crossplatform development frameworks in terms of the different approaches, supported platforms, programming languages, access to native features and license. This first stage has the outcome of finding the development framework that best fits to the requirements of the project, that is PhoneGap, and continues with a deeper analysis of its architecture, features and components. Next stage analyzes current company's applications to extract the needed source code and adapt it to the architecture of the prototype. For the realization of the application, the feature that PhoneGap offers to access the native layer of the device is used. This feature is called plugin. A custom plugin is designed and developed to access the native layer of each targeted platform. Once the prototype is finished for Android, it is migrated and adapted to the iOS platform. As a final conclusion the prototypes are evaluated in terms of ease and time of development, performance, functionality and look and feel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hostile environments at CERN and other similar scientific facilities, having a reliable mobile robot system is essential for successful execution of robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs out of energy. Because of environmental constraints, such mobile robots are usually battery-powered and hence energy management and optimization is one of the key challenges in this field. The ability to know beforehand the energy consumed by various elements of the robot (such as locomotion, sensors, controllers, computers and communication) will allow flexibility in planning or managing the tasks to be performed by the robot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intent of this work was to develop a mobile robotic platform that was controlled by a Palm Pilot PDA. Advances in consumer electronics are producing powerful yet small handheld devices. Some of these devices present quasi-PC capabilities for a fraction of the cost; furthermore, they are compact enough that they fit in all but the smallest of platforms. The platform prototype built for testing purposes has a differential-drive configuration to provide simple but agile movement control. The sensor package consisted of two infrared ranging sensors mounted on servomotors that provide a wide area of detection. Building such a platform involved selection of hardware, circuit integration and software development. The software suite selected to develop code for the Palm Pilot was CodeWarrior, a C compiler that can generate code in Palm-native PRC files.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper in hand presents a mobile testbed –namely the Heavy Duty Planetary Rover (HDPR)– that was designed and constructed at the Automation and Robotics Laboratories (ARL) of the European Space Agency to fulfill the lab’s internal needs in the context of long range rover exploration as well as in order to provide the means to perform in situ testing of novel algorithms. We designed a rover that: a) is able to reliably perform long range routes, and b) carries an abundant of sensors (both current rover technology and futuristic ones). The testbed includes all the additional hardware and software (i.e. ground control station, UAV, networking, mobile power) to allow the prompt deployment on the field. The reader can find in the paper the description of the system as well as a report on our experiences during our first experiments with the testbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the adaptation of Wireless Sensor Networks (WSNs) to application areas requiring mobility increased the security threats against confidentiality, integrity and privacy of the information as well as against their connectivity. Since, key management plays an important role in securing both information and connectivity, a proper authentication and key management scheme is required in mobility enabled applications where the authentication of a node with the network is a critical issue. In this paper, we present an authentication and key management scheme supporting node mobility in a heterogeneous WSN that consists of several low capabilities sensor nodes and few high capabilities sensor nodes. We analyze our proposed solution by using MATLAB (analytically) and by simulation (OMNET++ simulator) to show that it has less memory requirement and has good network connectivity and resilience against attacks compared to some existing schemes. We also propose two levels of secure authentication methods for the mobile sensor nodes for secure authentication and key establishment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erratum to: A high-flux BEC source for mobile atom interferometers in: New Journal of Physics 17 (2015) 065001

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BECs) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of 4x10(5) quantum degenerate Rb-87 atoms every 1.6 s. Ensembles of 1 x 10(5) atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical places are given contextual meaning by the objects and people that make up the space. Presence in physical places can be utilised to support mobile interaction by making access to media and notifications on a smartphone easier and more visible to other people. Smartphone interfaces can be extended into the physical world in a meaningful way by anchoring digital content to artefacts, and interactions situated around physical artefacts can provide contextual meaning to private manipulations with a mobile device. Additionally, places themselves are designed to support a set of tasks, and the logical structure of places can be used to organise content on the smartphone. Menus that adapt the functionality of a smartphone can support the user by presenting the tools most likely to be needed just-in-time, so that information needs can be satisfied quickly and with little cognitive effort. Furthermore, places are often shared with people whom the user knows, and the smartphone can facilitate social situations by providing access to content that stimulates conversation. However, the smartphone can disrupt a collaborative environment, by alerting the user with unimportant notifications, or sucking the user in to the digital world with attractive content that is only shown on a private screen. Sharing smartphone content on a situated display creates an inclusive and unobtrusive user experience, and can increase focus on a primary task by allowing content to be read at a glance. Mobile interaction situated around artefacts of personal places is investigated as a way to support users to access content from their smartphone while managing their physical presence. A menu that adapts to personal places is evaluated to reduce the time and effort of app navigation, and coordinating smartphone content on a situated display is found to support social engagement and the negotiation of notifications. Improving the sensing of smartphone users in places is a challenge that is out-with the scope of this thesis. Instead, interaction designers and developers should be provided with low-cost positioning tools that utilise presence in places, and enable quantitative and qualitative data to be collected in user evaluations. Two lightweight positioning tools are developed with the low-cost sensors that are currently available: The Microsoft Kinect depth sensor allows movements of a smartphone user to be tracked in a limited area of a place, and Bluetooth beacons enable the larger context of a place to be detected. Positioning experiments with each sensor are performed to highlight the capabilities and limitations of current sensing techniques for designing interactions with a smartphone. Both tools enable prototypes to be built with a rapid prototyping approach, and mobile interactions can be tested with more advanced sensing techniques as they become available. Sensing technologies are becoming pervasive, and it will soon be possible to perform reliable place detection in-the-wild. Novel interactions that utilise presence in places can support smartphone users by making access to useful functionality easy and more visible to the people who matter most in everyday life.