965 resultados para mismatched beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 key X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transmission problem involving two Euler-Bernoulli equations modeling the vibrations of a composite beam is studied. Assuming that the beam is clamped at one extremity, and resting on an elastic bearing at the other extremity, the existence of a unique global solution and decay rates of the energy are obtained by adding just one damping device at the end containing the bearing mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A proposed adequation of NBR 6118, Item 7.4, related to shear strength of reinforced concrete beams is presented with aims to application on circular cross-section. The actual expressions are most suitable to rectangular cross-section and some misleading occurs when applied to circular sections at determination of VRd2, Vc and Vsw, as consequence of bw (beam width) and d (effective depth) definitions as well as the real effectiveness of circular stirrups. The proposed adequation is based on extensive bibliographic review and practical experience with a great number of infrastructure elements, such as anchored retaining pile walls, where the use of circular reinforced concrete members is frequent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]The aim of this work is looking into the possibility of capturing the change in the modal properties (natural frequencies, modal shapes and modal damping ratio) of plain concrete elements due to the presence of cracked areas by using a simple continuum damage zone numerical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the work is to conduct a finite element model analysis on a small – size concrete beam and on a full size concrete beam internally reinforced with BFRP exposed at elevated temperatures. Experimental tests performed at Kingston University have been used to compare the results from the numerical analysis for the small – size concrete beam. Once the behavior of the small – size beam at room temperature is investigated and switching to the heating phase reinforced beams are tested at 100°C, 200°C and 300°C in loaded condition. The aim of the finite element analysis is to reflect the three – point bending test adopted into the oven during the exposure of the beam at room temperature and at elevated temperatures. Performance and deformability of reinforced beams are straightly correlated to the material properties and a wide analysis on elastic modulus and coefficient of thermal expansion is given in this work. Develop a good correlation between the numerical model and the experimental test is the main objective of the analysis on the small – size concrete beam, for both modelling the aim is also to estimate which is the deterioration of the material properties due to the heating process and the influence of different parameters on the final result. The focus of the full – size modelling which involved the last part of this work is to evaluate the effect of elevated temperatures, the material deterioration and the deflection trend on a reinforced beam characterized by a different size. A comparison between the results from different modelling has been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the Generalized Beam Theory (GBT) is used as the main tool to analyze the mechanics of thin-walled beams. After an introduction to the subject and a quick review of some of the most well-known approaches to describe the behaviour of thin-walled beams, a novel formulation of the GBT is presented. This formulation contains the classic shear-deformable GBT available in the literature and contributes an additional description of cross-section warping that is variable along the wall thickness besides along the wall midline. Shear deformation is introduced in such a way that the classical shear strain components of the Timoshenko beam theory are recovered exactly. According to the new kinematics proposed, a reviewed form of the cross-section analysis procedure is devised, based on a unique modal decomposition. Later, a procedure for a posteriori reconstruction of all the three-dimensional stress components in the finite element analysis of thin-walled beams using the GBT is presented. The reconstruction is simple and based on the use of three-dimensional equilibrium equations and of the RCP procedure. Finally, once the stress reconstruction procedure is presented, a study of several existing issues on the constitutive relations in the GBT is carried out. Specifically, a constitutive law based on mirroring the kinematic constraints of the GBT model into a specific stress field assumption is proposed. It is shown that this method is equally valid for isotropic and orthotropic beams and coincides with the conventional GBT approach available in the literature. Later on, an analogous procedure is presented for the case of laminated beams. Lastly, as a way to improve an inherently poor description of shear deformability in the GBT, the introduction of shear correction factors is proposed. Throughout this work, numerous examples are provided to determine the validity of all the proposed contributions to the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’uso di particelle cariche pesanti in radioterapia prende il nome di adroterapia. L’adroterapia permette l’irraggiamento di un volume bersaglio minimizzando il danno ai tessuti sani circostanti rispetto alla radioterapia tradizionale a raggi X. Le proprietà radiobiologiche degli ioni carbonio rappresentano un problema per i modelli radiobiologici a causa della non linearità della loro efficacia biologica. In questa tesi presenteremo gli algoritmi che possono essere usati per calcolare la dose fisica e biologica per un piano di trattamento del CNAO (Centro Nazionale Adroterapia Oncologica). Un caso di particolare interesse è l’eventualità che un piano di trattamento venga interrotto prima del dovuto. A causa della non linearità della sopravvivenza cellulare al variare della quantità di dose ricevuta giornalmente, è necessario studiare gli effetti degli irraggiamenti parziali utilizzando algoritmi che tengano conto delle tante variabili che caratterizzano sia i fasci di ioni che i tessuti irraggiati. Nell'ambito di questa tesi, appositi algoritmi in MATLAB sono stati sviluppati e implementati per confrontare la dose biologica e fisica assorbita nei casi di trattamento parziale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In high energy teletherapy, VMC++ is known to be a very accurate and efficient Monte Carlo (MC) code. In principle, the MC method is also a powerful dose calculation tool in other areas in radiation oncology, e.g., brachytherapy or orthovoltage radiotherapy. However, VMC++ is not validated for the low-energy range of such applications. This work aims in the validation of the VMC++ MC code for photon beams in the energy range between 20 and 1000 keV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allograft acceptance and tolerance can be achieved by different approaches including inhibition of effector T cell responses through CD28-dependent costimulatory blockade and induction of peripheral regulatory T cells (Tregs). The observation that Tregs rely upon CD28-dependent signals for development and peripheral expansion, raises the intriguing possibility of a counterproductive consequence of CTLA4-Ig administration on tolerance induction. We have investigated the possible negative effect of CTLA4-Ig on Treg-mediated tolerance induction using a mouse model of single MHC class II-mismatched skin grafts in which long-term acceptance was achieved by short-term administration of IL-2/anti-IL-2 complex. CTLA4-Ig treatment was found to abolish Treg-dependent acceptance in this model, restoring skin allograft rejection and Th1 alloreactivity. CTLA4-Ig inhibited IL-2-driven Treg expansion, and prevented in particular the occurrence of ICOS(+) Tregs endowed with potent suppressive capacities. Restoring CD28 signaling was sufficient to counteract the deleterious effect of CTLA4-Ig on Treg expansion and functionality, in keeping with the hypothesis that costimulatory blockade inhibits Treg expansion and function by limiting the delivery of essential CD28-dependent signals. Inhibition of regulatory T cell function should therefore be taken into account when designing tolerance protocols based on costimulatory blockade. Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statically balanced compliant mechanisms require no holding force throughout their range of motion while maintaining the advantages of compliant mechanisms. In this paper, a postbuckled fixed-guided beam is proposed to provide the negative stiffness to balance the positive stiffness of a compliant mechanism. To that end, a curve decomposition modeling method is presented to simplify the large deflection analysis. The modeling method facilitates parametric design insight and elucidates key points on the force-deflection curve. Experimental results validate the analysis. Furthermore, static balancing with fixed-guided beams is demonstrated for a rectilinear proof-of-concept prototype.