803 resultados para mindfulness-based mobile apps
Resumo:
Esta revisión sistemática de la literatura tuvo como objetivo investigar sobre la depresión en personas con epilepsia en la última década (2005-2015), enfocándose en identificar en el paciente con epilepsia: características sociodemográficas, prevalencia de la depresión, tipos de intervención para el manejo de la depresión, factores asociados con la aparición y el mantenimiento de la depresión y por último, identificar las tendencias en investigación en el estudio de la depresión en pacientes con epilepsia. Se revisaron 103 artículos publicados entre 2005 y 2015 en bases de datos especializadas. Los resultados revelaron que la prevalencia de depresión en pacientes con epilepsia es diversa y oscila en un rango amplio entre 3 y 70 %, por otro lado, que las principales características sociodemográficas asociadas a la depresión está el ser mujer, tener un estado civil soltero y tener una edad comprendida entre los 25 y los 45 años. A esto se añade, que los tratamientos conformados por terapia psicológica y fármacos, son la mejor opción para garantizar la eficacia en los resultados del manejo de la depresión en los pacientes con epilepsia. Con respecto a los factores asociados a la aparición de la depresión en pacientes con epilepsia, se identificaron causas tanto neurobiológicas como psicosociales, asimismo los factores principales asociados al mantenimiento fueron una percepción de baja calidad de vida y una baja auto-eficacia. Y finalmente los tipos de investigación más comunes son de tipo aplicado, de carácter descriptivo, transversales y de medición cuantitativa.
Resumo:
Las enfermedades raras o huérfano son una problemática que ha tomado mucha importancia en el contexto mundial del presente siglo, estas se han definido como crónicas, de difícil tratamiento de sus síntomas y con baja prevalencia en la población; muchas de estas enfermedades cursan con varios tipos de discapacidad, siendo el objetivo del presente trabajo el enfocarse en aquellas enfermedades raras que cursan con discapacidad intelectual. Para poder profundizar en estas enfermedades se realizó una revisión teórica sobre las enfermedades raras, así como de la discapacidad psíquica y su importancia a nivel mundial y nacional. A partir de estas definiciones, se revisaron en profundidad 3 enfermedades raras que cursan con discapacidad intelectual en el contexto colombiano, como son: el síndrome de Rett, el síndrome de Prader-Willi y el síndrome de X frágil. En cada una de estas enfermedades además se explicaron los tipos de diagnóstico, intervención, prevención, grupos de apoyo y tipos de evaluación que más se usan en el contexto nacional
Resumo:
Hoy en día, en el mundo se están presentando grandes avances tecnológicos, lo que ha producido cambios en las vidas de las personas, las organizaciones, gobiernos, los Estados y en general en la vida en la tierra. Gracias a estos avances tecnológicos se han creado las TICS o Tecnologías de la Información y Comunicaciones, las cuales han permitido la simplificación de diferentes procesos, han cambiado la forma de interactuar de las personas y la manera de operar de las empresas. En países desarrollados las TICS han venido funcionando desde hace unas décadas pero en los países de Latinoamérica en especial Colombia, un país en vía de desarrollo con un potencial de crecimiento y tendencia al desarrollo, empezaron a hacer uso de estas tecnologías a principio del siglo XXI, trayendo grandes avances y beneficios a los colombianos. Actualmente Colombia es un país en el cual se desarrollan diferentes tipos de tecnologías como aplicaciones móviles, soluciones informáticas, herramientas online, videojuegos, entre otras, lo que ha permitido consolidar al país como un destino atractivo de inversión y proveedor de TICS a nivel mundial.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.
Resumo:
This work discusses the use of optical flow to generate the sensorial information a mobile robot needs to react to the presence of obstacles when navigating in a non-structured environment. A sensing system based on optical flow and time-to-collision calculation is here proposed and experimented, which accomplishes two important paradigms. The first one is that all computations are performed onboard the robot, in spite of the limited computational capability available. The second one is that the algorithms for optical flow and time-to-collision calculations are fast enough to give the mobile robot the capability of reacting to any environmental change in real-time. Results of real experiments in which the sensing system here proposed is used as the only source of sensorial data to guide a mobile robot to avoid obstacles while wandering around are presented, and the analysis of such results allows validating the proposed sensing system.
Resumo:
The relation between patient and physician in most modern Health Care Sys- tems is sparse, limited in time and very in exible. On the other hand, and in contradiction with several recent studies, most physicians do not rely their patient diagnostics evaluations on intertwined psychological and social nature factors. Facing these problems and trying to improve the patient/physician relation we present a mobile health care solution to im- prove the interaction between the physician and his patients. The solution serves not only as a privileged mean of communication between physicians and patients but also as an evolutionary intelligent platform delivering a mobile rule based system.
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
In this paper a new PCA-based positioning sensor and localization system for mobile robots to operate in unstructured environments (e. g. industry, services, domestic ...) is proposed and experimentally validated. The inexpensive positioning system resorts to principal component analysis (PCA) of images acquired by a video camera installed onboard, looking upwards to the ceiling. This solution has the advantage of avoiding the need of selecting and extracting features. The principal components of the acquired images are compared with previously registered images, stored in a reduced onboard image database, and the position measured is fused with odometry data. The optimal estimates of position and slippage are provided by Kalman filters, with global stable error dynamics. The experimental validation reported in this work focuses on the results of a set of experiments carried out in a real environment, where the robot travels along a lawn-mower trajectory. A small position error estimate with bounded co-variance was always observed, for arbitrarily long experiments, and slippage was estimated accurately in real time.
Resumo:
Trabalho de Projeto realizado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
The Internet of Things (IoT) has emerged as a paradigm over the last few years as a result of the tight integration of the computing and the physical world. The requirement of remote sensing makes low-power wireless sensor networks one of the key enabling technologies of IoT. These networks encompass several challenges, especially in communication and networking, due to their inherent constraints of low-power features, deployment in harsh and lossy environments, and limited computing and storage resources. The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) [1] was proposed by the IETF ROLL (Routing Over Low-power Lossy links) working group and is currently adopted as an IETF standard in the RFC 6550 since March 2012. Although RPL greatly satisfied the requirements of low-power and lossy sensor networks, several issues remain open for improvement and specification, in particular with respect to Quality of Service (QoS) guarantees and support for mobility. In this paper, we focus mainly on the RPL routing protocol. We propose some enhancements to the standard specification in order to provide QoS guarantees for static as well as mobile LLNs. For this purpose, we propose OF-FL (Objective Function based on Fuzzy Logic), a new objective function that overcomes the limitations of the standardized objective functions that were designed for RPL by considering important link and node metrics, namely end-to-end delay, number of hops, ETX (Expected transmission count) and LQL (Link Quality Level). In addition, we present the design of Co-RPL, an extension to RPL based on the corona mechanism that supports mobility in order to overcome the problem of slow reactivity to frequent topology changes and thus providing a better quality of service mainly in dynamic networks application. Performance evaluation results show that both OF-FL and Co-RPL allow a great improvement when compared to the standard specification, mainly in terms of packet loss ratio and average network latency. 2015 Elsevier B.V. Al
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
Developing countries face serious problems on building and using digital libraries (DL) due to low computer and Internet penetration rates, lack of financial resources, etc. Thus, since mobile phones are much more used than computers in these countries, they might be a good alternative for accessing DL. Moreover, in the developed world there has been an exponential growth on the usage of mobile phones for data traffic, establishing a good ground for accessing DL on mobile devices. This paper presents a design proposal for making DSpace-based digital libraries accessible on mobile phones. Since DSpace is a popular free and open source DL system used around the world, making it accessible through mobile devices might contribute for improving the global accessibility of scientific and academic publications.