909 resultados para migration of rhizobia
Resumo:
Background: Kinesin family member 2a (KIF2A), a type of motor protein found in eukaryotic cells, is associated with development and progression of various human cancers. The role of KIF2A during breast cancer tumorigenesis and progression was studied.
Methods: Immunohistochemical staining, real time RT-PCR and western blot were used to examine the expression of KIF2A in cancer tissues and adjacent normal tissues from breast cancer patients. Patients' survival in relation to KIF2A expression was estimated using the Kaplan-Meier survival and multivariate analysis. Breast cancer cell line, MDA-MB-231 was used to study the proliferation, migration and invasion of cells following KIF2A-siRNA transfection.
Results: The expression of KIF2A in cancer tissues was higher than that in normal adjacent tissues from the same patient (P <0.05). KIF2A expression in cancer tissue with lymph node metastasis and HER2 positive cancer were higher than that in cancer tissue without (P <0.05). A negative correlation was found between KIF2A expression levels in breast cancer and the survival time of breast cancer patients (P <0.05). In addition, multivariate analysis indicated that KIF2A was an independent prognostic for outcome in breast cancer (OR: 16.55, 95% CI: 2.216-123.631, P = 0.006). The proliferation, migration and invasion of cancer cells in vitro were suppressed by KIF2A gene silencing (P <0.05).
Conclusions: KIF2A may play an important role in breast cancer progression and is potentially a novel predictive and prognostic marker for breast cancer.
Resumo:
We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69MJup planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P d < 10 ) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (Teff < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.
Resumo:
Pelagic longliners targeting swordfish and tunas in oceanic waters regularly capture sharks as bycatch, including currently protected species as the bigeye thresher, Alopias superciliosus. Fifteen bigeye threshers were tagged with pop-up satellite archival tags (PSATs) in 2012-2014 in the tropical northeast Atlantic, with successful transmissions received from 12 tags for a total of 907 tracking days. Marked diel vertical movements were recorded on all specimens, with most of the daytime spent in deeper colder water (mean depth = 353 m, SD = 73; mean temperature = 10.7 °C, SD = 1.8) and nighttime spent in warmer water closer to the surface (mean depth = 72 m, SD = 54; mean temperature = 21.9 °C, SD = 3.7). The operating depth of the pelagic longline gear was measured with Minilog Temperature and Depth Recorders (TDRs), and the overlap with habitat utilization was calculated. Overlap is taking place mainly during the night and is higher for juveniles. The results presented herein can be used as inputs for Ecological Risk Assessments for bigeye threshers captured in oceanic tuna fisheries, and serve as a basis for efficient management and conservation of this vulnerable shark species.
Resumo:
During tissue inflammation, infiltrated leukocytes may have physical contacts with fibroblasts. We observed that neutrophils and B lymphocytes adhered in a larger proportion than T cells on cultured fibroblasts. Microscopy showed that adhesion was also characterized by leukocyte engulfment by the fibroblasts. In migration assays, only neutrophils and B lymphocytes were selectively able to migrate through a fibroblast barrier. Adhesion and migration were increased by stimulation with tumor necrosis factor-alpha (TNF-alpha) and phorbol-12-myristate-13-acetate (PMA). Antibodies against ICAM-1/beta2 integrin blocked the interaction of neutrophils to fibroblasts. For B lymphocytes the couple VCAM-1/alpha4 integrin was also involved in this interaction. Human skin fibroblasts presented similar adhesion characteristics as rat cardiac fibroblasts. By measuring the distance between the border of migration holes and cadherin-positive adherens junctions, more than 65% of the holes correspond to the transcellular route over the paracellular route. Furthermore, vimentin staining revealed that the migration holes were highly nested by intermediate filaments in accordance with the transcellular route. Our results demonstrated that engulfment of neutrophils and B lymphocytes by fibroblasts resulted in selective passage by a transcellular route.
Resumo:
Research into transmissible spongiform encephalopathy (TSE) diseases has become a high priority worldwide in recent years yet remarkably little is known about the behaviour of TSE infectivity in the environment. The resilience and stability of prion proteins could lead to soils becoming a potential reservoir of TSE infectivity as a result of contamination from activities such as infected carcass burial or the dispersion of effluents from slaughter houses, or by contamination of pastures by infected animals, (e.g. scrapie in sheep). Knowledge of the fate of prion proteins in soils, and associated physico-chemical conditions which favour migration, can be used to help prevent re-infection of animals through grazing, to protect watercourses and develop good management practices. In two consecutive experiments of 9 and 6 months, the migration of recombinant ovine PrP (recPrP) in soil columns was followed under contrasting levels of microbial activity (normal versus reduced), under varying regimes of soil water content and redox potential, and in two different soil types (loamy sand and clay loam). At each analysis time (1, 3, 6 or 9 months), in both soil types, full-length recPrP was detected in the original contaminated layer, indicating the resilience and stability of recPrP under varied soil conditions, even in the presence of active soil microbial populations. Evidence of protein migration was found in every soil column at the earliest analysis time (1 or 3 months), but was restricted to a maximum distance of 1 cm, indicative of limited initial mobility in soils followed by strong adsorption over the following days to weeks. The survival of recPrP in the soil over a period of at least 9 months was demonstrated. In this study, recPrP was used as an indicator for potential TSE infectivity, although infectivity tests should be carried out before conclusions can be drawn regarding the infection risk posed by prions in soil. However, it has been demonstrated that soil is likely to act as a significant barrier to the dispersion of contaminated material at storage or burial sites. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Bacteria have evolved a wide variety of metabolic strategies to cope with varied environments. Some are specialists and only able to survive in restricted environments; others are generalists and able to cope with diverse environmental conditions. Rhizolbia (e.g. Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium species) can survive and compete for nutrients in soil and the plant rhizosphere but can also form a beneficial symbiosis with legumes in a highly specialized plant cell environment. Inside the legume-root nodule, the bacteria (bacteroids) reduce dinitrogen to ammonium, which is secreted to the plant in exchange for a carbon and energy source. A new and challenging aspect of nodule physiology is that nitrogen fixation requires the cycling of amino acids between the bacteroid and plant. This review aims to summarize the metabolic plasticity of rhizobia and the importance of amino acid cycling.
Resumo:
As a model for brain inflammation we previously studied transcriptional profiles of tumor necrosis factor-alpha (TNF)treated U373 astroglioma cells. In previous work we were able to demonstrate that the chemokine monocyte chemoattractant protein-1 (MCP-1, SCYA2, CCL2, MCAF) expression in U373 cells was inducible by TNF-alpha treatment. Demonstrably MCP-1 mRNA and protein expression in U373 cells was sustainable over time and at the highest level of all genes analyzed (Schwamborn et al., BMC Genomics 4, 46, 2003). In the hematopoietic system MCP-1 is a CC chemokine that attracts monocytes, memory T lymphocytes, and natural killer cells. In search of further functions in brain inflammation we tested the hypothesis that MCP-1 acts as a chemokine on neural stem cells. Here we report that MCP-1 activates the migration capacity of rat-derived neural stem cells. The migration of stem cells in a Boyden chamber analysis was elevated after stimulation with MCP-1. Time-lapse video microscopy visualized the migration of single stem cells from neurospheres in MCP-1-treated cultures, whereas untreated cultures depicted no migration at all, but showed signs of sprouting. Expression of the MCP-1 receptor CCR2 in neurosphere cultures was verified by RT-PCR and immunofluorescence microscopy. Supernatants from TNF-treated U373 cells also induced migration of neural stem cells.
Resumo:
Aluminium (Al) has been measured in human breast tissue, and may be a contributory factor in breast cancer development. At the 10th Keele meeting, we reported that long-term exposure to Al could increase migratory properties of oestrogen-responsive MCF-7 human breast cancer cells suggesting a role for Al in the metastatic process. We now report that long-term exposure (20–25 weeks) to Al chloride or Al chlorohydrate at 10−4 M or 10−5Mconcentrations can also increase themigration of oestrogen unresponsiveMDA-MB-231 human breast cancer cells as measured using time-lapse microscopy and xCELLigence technology. In parallel, Al exposure was found to give rise to increased secretion of active matrixmetalloproteinaseMMP9 as measured by zymography, and increased intracellular levels of activated MMP14 as measured by western immunoblotting. These results demonstrate that Al can increase migration of human breast cancer cells irrespective of their oestrogen responsiveness, and implicate alterations to MMPs as a potential mechanism worthy of further study.
Resumo:
Magnetic nanoparticles surface-functionalized with meso-2,3-dimercaptosuccinic acid (MNPs-DMSA) constitute an innovative and promising approach for tissue- and cell-targeted delivery of therapeutic drugs in the lung. Transendothelial migration of leukocytes in the lung is a side effect of endovenous administration of MNPs-DMSA. Using cytologic and phenotypic analysis of murine bronchoalveolar lavage cells, we identified monocytes/macrophages as the main subpopulation of leukocytes involved in this process. Moreover, ultrastructural analysis revealed the presence of nanoparticles inside of numerous macrophages from bronchoalveolar lavage. MNPs-DMSA at concentrations as high as 1 X 10(15) nanoparticles/mL had no toxic effects on macrophages, as evidenced by 3-(4, 5-dimethylthiazolyi-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Notably, MNPs-DMSA up-regulated the mRNA expression of E, L- and P-selectin and macrophage-1 antigen in the murine lung. Upregulation of these cell adhesion molecules was associated with an increased concentration of tumor necrosis factor-alpha in lung. Finally, the critical relevance of the beta(2) integrin-dependent pathway in leukocyte transmigration elicited by MNPs-DMSA was demonstrated by use of knockout mice. Our results characterize mechanisms of the pro-inflammatory effects of MNPs-DMSA in the lung, and identify beta(2) integrin-targeted interventions as promising strategies to reduce pulmonary side effects of MNPs-DMSA during biomedical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and beta 2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2 alpha beta (cytokine-induced neutrophil chemoattractant-2 alpha beta), IL-1 beta (interleukin-1 beta), MIP-1 alpha (macrophage inflammatory protein-1 alpha) and TNF-alpha (tumour necrosis factor-alpha)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2 alpha beta into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of beta 2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2 alpha beta release.