623 resultados para microorganism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

cis-Dihydrocatechols, derived from biological cis-dihydroxylation of methyl benzoate, iodobenzene and benzonitrile, using the microorganism Pseudomonas putida UV4, were converted into pericosines A, C, and B, respectively. This approach constitutes the shortest syntheses, to date, of these important natural products with densely packed functionalities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of naphthalene and 1-naphthol metabolism in a Rhodococcus sp. (NCIMB 12038) has been investigated. The microorganism utilizes separate pathways for the degradation of these compounds, and they are regulated independently, Naphthalene metabolism was inducible, but not by salicylate, and 1-naphthol metabolism, although constitutive, was also repressed during growth on salicylate. The biochemistry of naphthalene degradation in this strain was otherwise identical to that found in Pseudomonas putida, with salicylate as a central metabolite and naphthalene initially being oxidized via a naphthalene dioxygenase enzyme to cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphtalene (naphthalene cis-diol). A dioxygenase enzyme was not expressed under growth conditions which facilitate 1-naphthol degradation, However, biotransformations with indene as a substrate suggested that a monooxygenase enzyme may be involved in the degradation of this compound, Indole was transformed to indigo by both naphthalene-grown NCIMB 12038 and by cells grown in the absence of an inducer, Therefore, the presence of a naphthalene dioxygenase enzyme activity was not necessary for this reaction. Thus, the biotransformation of indole to indigo may be facilitated by another type of enzyme (possibly a monooxygenase) in this organism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cis-dihydrocatechol, derived from enzymatic cis-dihydroxylation of bromobenzene using the microorganism Pseudomonas putida UV4, was converted into (-)-epibatidine in eleven steps with complete stereocontrol. In addition, an unprecedented palladium-catalysed disproportionation reaction gave the (+)-enantiomer of an advanced key intermediate employed in a previous synthesis of epibatidine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins and humic acids are common constituents of waste water. Latex colloids (colloids) acted as surrogates for microorganisms in multiple pulse dynamic column experiments (MPEs) that permitted colloid mobility to be quantified before and after the injection of either BSA (a protein), or Suwannee River humic acid (SRHA).
At low OM coverage colloid breakthrough curves demonstrated both BSA and SRHA reduced colloid deposition rates, but did not affect colloid irreversible deposition mechanisms. By contrast, high levels of SRHA surface coverage not only further reduced the matrix’s ability to attenuate colloids, but also resulted in reversible adsorption of a significant fraction of colloids deposited. Modelling of colloid responses using random sequential adsorption modelling suggested that 1 microgram of SRHA had the same effect as the deposition of 5.90±0.14 x109 colloids; the model suggested that adsorption of the same mass of BSA was equivalent to the deposition of between 7.1x108 and 2.3x109 colloids.
Colloid responses in MPEs where BSA coverage of colloid deposition sites approached saturation demonstrated the sand matrix remained capable of adsorbing colloids. However, in contrast to responses observed in MPEs at low surface coverage, continued colloid injection showed that the sand’s attenuation capacity increased with time, i.e. colloid concentrations declined as more were deposited (filter ripening).
Importance: Study results highlight the contrasting responses that may arise due to the interactions between colloids and OM in porous media. Results not only underscore that colloids can interact differently with various forms of deposited OM, but also that a single type of OM may generate dramatically different responses depending on the degree of surface coverage. The MPE method provides a means of quantifying the influence of OM on microorganism mobility in porous media such as filter beds, which may be used for either drinking water treatment or waste water treatment. In the wider environment study findings have potential to allow more confident predictions of the mobility of sewage derived pathogens discharging to groundwater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of high-pressure processing (HPP) in conjunction with an essential oil-based active packaging on the surface of ready-to-eat (RTE) chicken breast were investigated as post-processing listericidal treatment. Three different treatments were used, and all samples were vacuum packed: (i) HPP at 500. MPa for 1. min (control), (ii) active packaging based on coriander essential oil, and (iii) active packaging and HPP. When applied individually, active packaging and pressurisation delayed the growth of Listeria monocytogenes. The combination of HPP and active packaging resulted in a synergistic effect reducing the counts of the pathogen below the detection limit throughout 60. days storage at 4. °C. However, when these samples were stored at 8. °C, growth did occur, but again a delay in growth was observed. The effects on colour and lipid oxidation were also studied during storage and were not significantly affected by the treatments. Active packaging followed by in-package pressure treatment could be a useful approach to reduce the risk of L. monocytogenes in cooked chicken without impairing its quality. Industrial relevance: Ready-to-eat products are of great economic importance to the industry. However, they have been implicated in several outbreaks of listeriosis. Therefore, effective ways to reduce the risk from this pathogenic microorganism can be very attractive for manufacturers. This study showed that the use of active packaging followed by HPP can enhance the listericidal efficiency of the treatment while using lower pressure levels, and thus having limited effects on colour and lipid oxidation of RTE chicken breast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic (As) is ubiquitous in the environment in the carcinogenic inorganic forms, posing risks to human health in many parts of the world. Many microorganisms have evolved a series of mechanisms to cope with inorganic arsenic in their growth media such as transforming As compounds into volatile derivatives. Bio-volatilization of As has been suggested to play an important role in global As biogeochemical cycling, and can also be explored as a potential method for arsenic bioremediation. This review aims to provide an overview of the quality and quantity of As volatilization by fungi, bacteria, microalga and protozoans. Arsenic bio-volatilization is influenced by both biotic and abiotic factors that can be manipulated/elucidated for the purpose of As bioremediation. Since As bio-volatilization is a resurgent topic for both biogeochemistry and environmental health, our review serves as a concept paper for future research directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel strategy for the prevention of ventilator-associatedpneumonia that involves coating poly(vinyl chloride, PVC) endotracheal tubes (ET) withhydrogels that may be subsequently used to entrap nebulized antimicrobial solutions. Candidatehydrogels were prepared containing a range of ratios of hydroxyethyl methacrylate (HEMA) andmethacrylic acid (MAA) from 100:0 to 70:30 using free radical polymerization and, whenrequired, simultaneous attachment to PVC was performed. The mechanical properties, glasstransition temperatures, swelling kinetics, uptake of gentamicin from an aqueous medium, andgentamicin release were characterized. Increasing the MAA content of the hydrogels significantlydecreased the ultimate tensile strength, % elongation at break, Young’s modulus, and increasedthe glass transition temperature, the swelling ratio, and gentamicin uptake. Microbial(Staphylococcus aureus and Pseudomonas aeruginosa) adherence to control (drug-free) hydrogelswas observed; however, while adherence to gentamicin-containing p(HEMA) occurred, noadherence occurred to gentamicin-containing HEMA:MAA copolymers. Antimicrobialpersistence of gentamicin-containing hydrogels was examined by determining the zone ofinhibition against each microorganism on successive days. Hydrogel composition affected the observed antimicrobial persistence,with the hydrogel composed of 70:30 HEMA:MAA exhibiting >20 days persistence against S. aureus and P. aeruginosa,respectively. To simulate clinical use, the hydrogels (coated onto PVC) were first exposed to a nebulized solution of gentamicin(4 mL, 80 mg for 20 min), and then to nebulized bacteria (4 mL ca. 1 × 109 colony forming units mL−1, 30 min). Viable bacteriawere not observed on the gentamicin-treated p(HEMA: MAA) copolymers, whereas growth was observed on gentamicin-treatedp(HEMA). In light of the excellent antimicrobial activity and physicochemical properties, p(HEMA: MAA) copolymerscomposed of ratios of 80:20 or 70:30 HEMA: MAA were identified as potentially useful coatings of endotracheal tubes to be usedin conjunction with the clinical nebulization of gentamicin and designed for the prevention of ventilator-associated pneumonia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective cell recognition and capture has recently attracted significant interest due to its potential importance for clinical, diagnostic, environmental, and security applications. Current methods for cell isolation from complex samples are largely dependent on cell size and density, with limited application scope as many of the target cells do not exhibit appreciable differences in this respect. The most recent and forthcoming developments in the area of selective recognition and capture of whole cells, based on natural receptors, as well as synthetic materials utilising physical and chemical properties of the target cell or microorganism, are highlighted. Particular focus is given to the development of cell complementary surfaces using the cells themselves as templating agents, by means of molecular imprinting, and their combination with sensing platforms for rapid cell detection in complex media. The benefits and challenges of each approach are discussed and a perspective of the future of this research area is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravel aquifers act as important potable water sources in central western Europe yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers Escherichia coli and Pseudomonas putida, was used to investigate a calcareous gravel aquifer’s ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed E. coli relative recoveries could exceed those of H40/1 at monitoring wells 10 m and 20 m from an injection well by almost four times; P. putida recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged E. coli occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged P. putida experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relevância etnofarmacológica: Artemisia gorgonum (Asteraceae), conhecida como “losna ou lorna”, é usada em Cabo Verde na medicina tradicional para o tratamento de inflamações, febre e gastroenterites. Estudos recentes sugerem que artimetina, isolada a partir de Artemisa gorgonum, poderia ser usada para o tratamento da malária devido à sua atividade antiplasmodial. Objetivo do estudo: Avaliação in vitro da atividade anti-microbiana e sinergética dos extratos hidroetanol (70%) e metanol de A. gorgonum (EHAG e EMAG) em bactérias do trato urinário e uma espécie de fungo. A atividade antioxidante dos extratos de hidroetanol (70%), metanol, clorofórmio e clorofórmio-metanol (1:2), e o efeito protetor de EHAG contra lesões hepáticas em ratos induzidos com CCl4 também foram analisados. Material e métodos: A atividade antimicrobiana dos extratos de A. gorgonum foi testada in vitro contra sete estirpes de microrganismos, incluindo bactérias Gram-positivas, Gram-negativas e uma espécie de fungo. O método DAA (Decimal assay for additivity) foi determinado para atividade antibacteriana do EHAG contra Pseudomonas aeruginosa. O efeito antioxidante in vitro de vários extratos de A. gorgonum foi analisado pelo método DPPH. A lesão hepática foi induzida por injeção intrapeitoral do CCl4. Seguidamente, os ratos foram administrados oralmente com EHAG, diariamente, por um período de 7 dias. Resultados e Discussão: Foi observada atividade antibacteriana dos extratos de EHAG e EMAG contra todos os microrganismos usados neste estudo. O crescimento das estirpes de Escherichia coli e Pseudomonas aeruginosa foi o mais inibido por ambos os extratos, apresentando valores significativos, enquanto o crescimento das estirpes S. aureus e Klebsiella spp. foi o menos afetado. Candida albicans foi inibida fortemente pelo EMAG. As combinações de extrato hidroetanólico com antibióticos demonstraram atividade antibacteriana sinergética contra todos os patogénicos testados. Em contrapartida, a combinação de extrato metanólico com antibióticos permitiu observar efeitos antagónicos contra todas as bactérias, exceto Klebsiella spp. que apresentou atividade sinérgica. O EHAG e EMAG mostraram efeito significativo na eliminação do radical DPPH. A atividade hepatoprotetora foi observada em ratos previamente administrados com CCl4. Estes estudos evidenciam os potenciais benefícios de A. gorgonum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioprocesses use microorganisms or cells in order to produce and/or obtain some desired products. Nowadays these strategies appear as a fundamental alternative to the traditional chemical processes. Amongst the many advantages associated to their use in the chemical, oil or pharmaceutical industries, their low cost, easily scale-up and low environmental impact should be highlighted. This work reports two examples of bioprocesses as alternatives to traditional chemical processes used by the oil and pharmaceutical industries. In the first part of this work it was studied an example of a bioprocess based on the use of microorganisms in enhanced oil recovery. Currently, due to high costs of oil and its scarcity, the enhanced oil recovery techniques become very attractive. Between the available techniques the use of microbial enhanced oil recovery (MEOR) has been highlighted. This process is based on the stimulation of indigenous microorganisms or by the injection of microorganism consortia to produce specific metabolites and hence increase the amount of oil recovered. In the first chapters of this work the isolation of several microorganisms from samples of paraffinic Brazilian oils is described, and their tensioactive and biodegradability properties are presented. Furthermore, the chemical structures of the biosurfactants produced by those isolates were also characterized. In the final chapter of the first part, the capabilities of some isolated bacteria to enhance the oil recovery of paraffinic Brazilian oils entrapped in sand-pack columns were evaluated. In the second part of this work it was investigated aqueous two-phase systems or aqueous biphasic systems (ABS) as extractive strategies for antibiotics directly from the fermented broth in which they are produced. To this goal, several aqueous two-phase systems composed of ionic liquids (ILs) and polymers were studied for the first time and their phase diagrams were determined. The novel ATPS appear as effective and economic methods to extract different biomolecules or/and biological products. Thus, aiming the initial antibiotics extraction purpose it was studied the influence of a wide range of ILs and polymers in the aqueous two-phase formation ability, as well as their influence in the partitioning of several type-molecules, such as amino acids, alkaloids and dyes. As a final chapter it is presented the capacity of these novel systems to extract the antibiotic tetracycline directly from the fermented broth of Streptomyces aureofaciens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho abordou a valorização de um subproduto da indústria de lacticínios (soro de queijo) através da alteração do funcionamento de processos habitualmente utilizados no contexto do tratamento biológico. Foi avaliada a fermentação acidogénica deste subproduto para maximizar a conversão do seu elevado teor de matéria orgânica em ácidos orgânicos voláteis (AOV) que actualmente são produtos com elevada procura, nomeadamente para produção de polihidroxialcanoatos (PHA). Em ensaios descontínuos e semi-contínuos foi caracterizada a produção e composição de AOV a partir de soro de queijo variando a razão food-to-microorganism (F/M) e a concentração de alcalinidade. Recorrendo à modelação dos resultados através de superfícies de resposta, demonstrou-se que condições de F/M = 4 gCQO g-1SSV combinadas com uma adição elevada de alcalinidade (8 g L-1 expresso como CaCO3) resultaram na conversão de 72% da CQO alimentada em AOV. O acetato e o butirato foram os AOV predominantes (60%), mas elevadas razões F/M combinadas com elevadas alcalinidades promoveram o alongamento da cadeia carboxílica, tendo sido produzidos AOV de maior massa molecular (iso-valerato e n-caproato). O processo de fermentação acidogénica foi posteriormente desenvolvido em modo contínuo num reactor MBBR acidogénico operado a longo prazo. Cargas orgânicas entre 30 e 50 gCQO L-1d-1 permitiram obter um grau de acidificação máximo de 68% no efluente fermentado. Foi ainda demonstrado que uma adição dinâmica de alcalinidade (0 – 4,8 g CaCO3 L-1) nestas condições estimulou a produção de AOV de cadeia ímpar (propionato e n-valerato) até 42%. O efluente acidificado no processo anaeróbio foi usado como substrato em reactores SBR operados para selecção de culturas microbianas mistas acumuladoras de PHA, nos quais foi aplicado um regime de alimentação dinâmica em condições aeróbias (“fartura-fome”). Estes sistemas operaram também a longo prazo, e demonstraram ser capazes de remover mais de 96% da CQO alimentada e simultaneamente convertê-la em PHA, até 36% do peso celular seco. A velocidade de remoção de substrato (valor máximo de 1,33 gCQO g-1SSV h-1) foi proporcional ao teor de polímero acumulado, evidenciando o estabelecimento de uma fase de “fome” prolongada que estimulou a selecção de microrganismos com elevada capacidade de acumulação de PHA. Além disso, o teor molar de hidroxivalerato (HV) no copolímero produzido [P(HB-co-HV)] foi directamente proporcional ao teor de AOV de cadeia ímpar (propionato e n-valerato) presente no soro fermentado que serviu de substrato. Uma estratégia de operação do reactor SBR com variação da carga orgânica, aliada ao regime “fartura-fome” estabelecido, permitiu ainda simular a realidade dos processos de tratamento biológico de efluentes, nos quais a composição e concentração inicial de matéria orgânica variam frequentemente. Este modo de operação do sistema estimulou notavelmente o processo de selecção de culturas acumuladoras de PHA tendo resultado num aumento da acumulação de PHA de 7% para 36%. Os resultados demonstraram com sucesso a possibilidade de valorização do soro de queijo através de eco-biotecnologia, contribuindo para uma mudança de paradigma no tratamento convencional de efluentes: ao invés de serem eliminados enquanto poluentes, os componentes orgânicos presentes neste subproduto industrial podem assim ser convertidos em materiais de valor acrescentado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação mest., Aquacultura e Pescas, Universidade do Algarve, 2006

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to produce packaging films with a broad spectrum of action on microorganisms, the effect of two antimicrobial (AM) to be included in the films, carvacrol and GSE were studied separately on different microorganisms. Carvacrol was more effective against the grampositive bacteria than against the gram-negative bacterium. GSE was not effective against yeast. Subsequently, a search for optimal combinations of carvacrol, GSE and the addition of chitosan (as a third component with film forming properties) was carried out. Response surface analysis showed several synergetic effects and three optimal AM combinations (OAMC) were obtained for each microorganism. The experimental validation confirmed that the optimal solutions found can successfully predict the response for each microorganism. The optimization of mixtures of the three components, but this time, using the same concentration for all microorganisms, was also studied to obtain an OAMC with wide spectrum of activity. The results of the response surface analysis showed several synergistic effects for all microorganisms. Three OAMC, OAMC-1, OAMC-2, OAMC-3, were found to be the optimal mixtures for all microorganisms. The radical scavenging activity (RSA) of the different agents was then compared with a standard antioxidant (AOX) BHT, at different concentrations; as also at the OAMC. The RSA increased in the following order: chitosan