921 resultados para metallic nanoparticle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Coronary in-stent restenosis cannot be directly assessed by magnetic resonance angiography (MRA) because of the local signal void of currently used stainless steel stents. The aim of this study was to investigate the potential of a new, dedicated, coronary MR imaging (MRI) stent for artifact-free, coronary MRA and in-stent lumen and vessel wall visualization. METHODS AND RESULTS: Fifteen prototype stents were deployed in coronary arteries of 15 healthy swine and investigated with a double-oblique, navigator-gated, free-breathing, T2-prepared, 3D cartesian gradient-echo sequence; a T2-prepared, 3D spiral gradient-echo sequence; and a T2-prepared, 3D steady-state, free-precession coronary MRA sequence. Furthermore, black-blood vessel wall imaging by a dual-inversion-recovery, turbo spin-echo sequence was performed. Artifacts of the stented vessel segment and signal intensities of the coronary vessel lumen inside and outside the stent were assessed. With all investigated sequences, the vessel lumen and wall could be visualized without artifacts, including the stented vessel segment. No signal intensity alterations inside the stent when compared with the vessel lumen outside the stent were found. CONCLUSIONS: The new, coronary MRI stent allows for completely artifact-free coronary MRA and vessel wall imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Addressing the risks of nanoparticles requires knowledge about their hazards, which is generated progressively, but also about occupational exposure and liberation into the environment. However, currently such information is not systematically collected, therefore the risk assessment of this exposure or liberation lacks quantitative data. In 2006 a targeted telephone survey among Swiss companies (1) showed the usage of nanoparticles in a few selected companies but did not provide data to extrapolate on the totality of the Swiss workforce. The goal of this study was to evaluate in a representative way the current prevalence and level of nanoparticle usage in Swiss industry, the health, safety and environment measures, and the number of potentially exposed workers. Results A representative, stratified mail survey was conducted among 1,626 clients of the Swiss National Accident Insurance Fund (SUVA). SUVA insures about 80,000 manufacturing firms, which represent 84% of all Swiss manufacturing companies. 947 companies answered the survey (58.3% response rate). Extrapolation to all Swiss manufacturing companies results in 1,309 workers (95%-confidence interval, 1,073 to 1,545) across the Swiss manufacturing sector being potentially exposed to nanoparticles in 586 companies (95%-CI: 145 to 1'027). This corresponds to 0.08% (95%-CI: 0.06% to 0.09%) of all Swiss manufacturing sector workers and to 0.6% (95%-CI: 0.2% to 1.1%) of companies. The industrial chemistry sector showed the highest percentage of companies using nanoparticles (21.2% of those surveyed) and a high percentage of potentially exposed workers (0.5% of workers in these companies), but many other important sectors also reported nanoparticles. Personal protection equipment was the predominant protection strategy. Only a minority applied specific environmental protection measures. Conclusions This is the first representative nationwide study on the prevalence of nanoparticle usage across a manufacturing sector. The information about the number of companies can be used for quantitative risk assessment. Furthermore it can help policy makers designing strategies to support companies in the responsible development of safer nanomaterial use. Noting the low prevalence of nanoparticle usage, there would still seem to be time to introduce necessary protection methods in a proactive and cost effective way in Swiss industry. But if the predicted "nano-revolution" becomes true, now is the time to take action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members. QualityNano is an EU FP7 funded Research Infrastructure that integrates 28 European analytical and experimental facilities in nanotechnology, medicine and natural sciences with the goal of developing and implementing best practice and quality in all aspects of nanosafety assessment. This study looks at both the development of the protocol and how this leads to highly reproducible results amongst participants. In this study, the parameter being measured is the modal particle size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE: Induction of oxidative stress and impairment of the antioxidant defense are considered important biological responses following nanoparticle (NP) exposure. The acellular in vitro dithiothreitol (DTT) assay is proposed to measure the oxidative potential of NP. In addition, DTT can be considered as a model compound of sulfur containing antioxidants. The objective of this work is to evaluate the surface reactivity in solution of a NP panel toward DTT. METHOD: The NP panel was composed of four carbonaceous particles, six types of metal oxides and silver with primary size ranged from 7 to 300 nm. Suspensions were prepared in surfactant solution with 30 min sonication. DTT was used as reductant to evaluate the oxidative properties of the different NP. The determination of the NP ability to catalyze electron transfer from DTT to oxygen was carried out as described in Sauvain et al., Nanotoxicology, 2008, 2:3, 121−129. RESULTS: All the carbonaceous NP catalyzed the oxidation of DTT by oxygen following the mass based order: carbon black > diesel exhaust particle > nanotubes > fullerene. A contrasting reactivity was observed for the metallic NP. Except for nickel oxide and metallic silver, which reacted similarly to the carbonaceous NP, all other metal oxides hindered the oxidation of DTT by oxygen, with ZnO being the most effective one. CONCLUSIONS : DTT was stabilized against oxidation in the presence of metal oxide NP in the solution. This suggests that different chemical interactions take place compared with carbonaceous NP. To explain these differences, we hypothesize that DTT could form complexes with the metal oxide surface (or dissolved metal ions), rendering it less susceptible to oxidation. By analogy, such a process could be thought to apply in biological systems with sulfur−containing antioxidants, reducing their buffer capacity. Such NP could thus contribute to oxidative stress by an alternative mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manufactured nanoparticles are introduced into industrial processes, but they are suspected to cause similar negative health effects as ambient particles. The poor knowledge about the scale of this introduction did not allow global risk analysis so far. In 2006 a targeted telephone survey among Swiss companies (1) showed the usage of nanoparticles in a few selected companies but did not provide data to extrapolate on the totality of the Swiss workforce. To gain this kind of information a layered representative questionnaire survey among 1'626 Swiss companies was conducted in 2007. Data was collected about the number of potentially exposed persons in the companies and their protection strategy. The response rate was 58.3%. An expected number of 586 companies (95%−confidence interval 145 to 1'027) was shown by this study to use nanoparticles in Switzerland. Estimated 1'309 (1'073 to 1'545) workers do their job in the same room as a nanoparticle application. Personal protection was shown to be the predominant type of protection means. Companies starting productions with nanomaterials need to consider incorporating protection measures into the plans. This will not only benefit the workers' health, but will also likely increase the competitiveness of the companies. Technical and organisational protection means are not only more cost−effective on the long term, but are also easier to control. Guidelines may have to be designed specifically for different industrial applications, including fields outside nanotechnology, and adapted to all sizes of companies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.