992 resultados para leaf tissue


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The osmoprotectant 3-dimethylsulfoniopropionate (DMSP) occurs in Gramineae and Compositae, but its synthesis has been studied only in the latter. The DMSP synthesis pathway was therefore investigated in the salt marsh grass Spartina alterniflora Loisel. Leaf tissue metabolized supplied [35S]methionine (Met) to S-methyl-l-Met (SMM), 3-dimethylsulfoniopropylamine (DMSP-amine), and DMSP. The 35S-labeling kinetics of SMM and DMSP-amine indicated that they were intermediates and, consistent with this, the dimethylsulfonium moiety of SMM was shown by stable isotope labeling to be incorporated as a unit into DMSP. The identity of DMSP-amine, a novel natural product, was confirmed by both chemical and mass-spectral methods. S. alterniflora readily converted supplied [35S]SMM to DMSP-amine and DMSP, and also readily converted supplied [35S]DMSP-amine to DMSP; grasses that lack DMSP did neither. A small amount of label was detected in 3-dimethylsulfoniopropionaldehyde (DMSP-ald) when [35S]SMM or [35S]DMSP-amine was given. These results are consistent with the operation of the pathway Met → SMM → DMSP-amine → DMSP-ald → DMSP, which differs from that found in Compositae by the presence of a free DMSP-amine intermediate. This dissimilarity suggests that DMSP synthesis evolved independently in Gramineae and Compositae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genomic clones of two nonspecific lipid-transfer protein genes from a drought-tolerant wild species of tomato (Lycopersicon pennellii Corr.) were isolated using as a probe a drought- and abscisic acid (ABA)-induced cDNA clone (pLE16) from cultivated tomato (Lycopersicon esculentum Mill.). Both genes (LpLtp1 and LpLtp2) were sequenced and their corresponding mRNAs were characterized; they are both interrupted by a single intron at identical positions and predict basic proteins of 114 amino acid residues. Genomic Southern data indicated that these genes are members of a small gene family in Lycopersicon spp. The 3′-untranslated regions from LpLtp1 and LpLtp2, as well as a polymerase chain reaction-amplified 3′-untranslated region from pLE16 (cross-hybridizing to a third gene in L. pennellii, namely LpLtp3), were used as gene-specific probes to describe expression in L. pennellii through northern-blot analyses. All LpLtp genes were exclusively expressed in the aerial tissues of the plant and all were drought and ABA inducible. Each gene had a different pattern of expression in fruit, and LpLtp1 and LpLtp2, unlike LpLtp3, were both primarily developmentally regulated in leaf tissue. Putative ABA-responsive elements were found in the proximal promoter regions of LpLtp1 and LpLtp2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants synthesize several classes of small (15- to 30-kD monomer) heat-shock proteins (sHSPs) in response to heat stress, including a nuclear-encoded, chloroplast-localized sHSP (HSP21). Cytosolic sHSPs exist as large oligomers (approximately 200–800 kD) composed solely or primarily of sHSPs. Phosphorylation of mammalian sHSPs causes oligomer dissociation, which appears to be important for regulation of sHSP function. We examined the native structure and phosphorylation of chloroplast HSP21 to understand this protein's basic properties and to compare it with cytosolic sHSPs. The apparent size of native HSP21 complexes was > 200 kD and they did not dissociate during heat stress. We found no evidence that HSP21 or the plant cytosolic sHSPs are phosphorylated in vivo. A partial HSP21 complex purified from heat-stressed pea (Pisum sativum L.) leaves contained no proteins other than HSP21. Mature recombinant pea and Arabidopsis thaliana HSP21 were expressed in Escherichia coli, and purified recombinant Arabidopsis HSP21 assembled into homo-oligomeric complexes with the same apparent molecular mass as HSP21 complexes observed in heat-stressed leaf tissue. We propose that the native, functional form of chloroplast HSP21 is a large, oligomeric complex containing nine or more HSP21 subunits, and that plant sHSPs are not regulated by phosphorylation-induced dissociation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arabidopsis plants transformed with an antisense construct of an Arabidopsis methyltransferase cDNA (METI) have reduced cytosine methylation in CG dinucleotides. Methylation levels in progeny of five independent transformants ranged from 10% to 100% of the wild type. Removal of the antisense construct by segregation in sexual crosses did not fully restore methylation patterns in the progeny, indicating that methylation patterns are subject to meiotic inheritance in Arabidopsis. Plants with decreased methylation displayed a number of phenotypic and developmental abnormalities, including reduced apical dominance, smaller plant size, altered leaf size and shape, decreased fertility, and altered flowering time. Floral organs showed homeotic transformations that were associated with ectopic expression of the floral homeotic genes AGAMOUS and APETALA3 in leaf tissue. These observations suggest that DNA methylation plays an important role in regulating many developmental pathways in plants and that the developmental abnormalities seen in the methyltransferase antisense plants may be due to dysregulation of gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plantas transgênicas que expressam toxinas de Bacillus thuringiensis Berliner (Bt) têm sido amplamente utilizadas para o controle de Spodoptera frugiperda (J. E. Smith) no Brasil. Entretanto, a evolução da resistência é um dos maiores entraves para a continuidade do uso desta tecnologia. Para subsidiar programas de Manejo da Resistência de Insetos (MRI), foram conduzidos estudos para o aprimoramento dos programas de manejo da resistência de S. frugiperda a tecnologias Bt. Foram realizadas estudos para determinar a dominância funcional da resistência de S. frugiperda a tecnologias Bt mediante a avaliação da sobrevivência de larvas neonatas provenientes das linhagens de S. frugiperda resistentes ao milho Herculex® que expressa a proteína Cry1F (HX-R), ao milho YieldGard VT PRO™ que expressa as proteínas Cry1A.105 e Cry2Ab2 (VT-R), ao milho PowerCore™ que expressa as proteínas Cry1A.105, Cry2Ab2 e Cry1F (PW-R), e ao milho Agrisure Viptera™ que expressa a proteína Vip3Aa20 (Vip-R), além da linhagem suscetível (Sus) e de suas respectivas linhagens heterozigotas em diversas tecnologias de milho e algodão Bt. Posteriormente, um método prático para o monitoramento fenotípico da suscetibilidade a diferentes tecnologias de milho e algodão Bt foi testado a partir da avaliação da sobrevivência de larvas neonatas em folhas de plantas Bt em populações de S. frugiperda provenientes dos Estados do Rio Grande do Sul, Paraná, São Paulo, Goiás e Bahia na safra agrícola 2014/15. E por último, a estimativa da frequência de alelos de resistência de S. frugiperda a Vip3Aa20 foi validada pelo método de F1 screen. Em geral, observou-se alta mortalidade dos heterozigotos nas tecnologias Bt testadas, comprovando que a resistência de S. frugiperda a proteínas Bt é funcionalmente recessiva o que suporta a estratégia de refúgio em programas de MRI. Verificou-se também que linhagens resistentes a eventos que expressam proteínas Cry não sobrevivem em tecnologias que expressam proteína Vip. No monitoramento prático da suscetibilidade a tecnologias Bt, sobrevivência larval superior a 70% foi observada para populações de campo do Paraná, Goiás e Bahia no milho Herculex®. Em tecnologias de milho PowerCore™ e YieldGard VT PRO™ houve sobrevivência larval variando de 1,1 a 17,9%. Em contraste, não houve sobreviventes em tecnologias de milho Viptera™. Em algodão WideStrike® que expressa as proteínas Cry1Ac e Cry1F, sobrevivência acima de 41% foi observada para populações de campo de S. frugiperda. A sobrevivência larval em Bollgard II® que expressa as proteínas Cry1Ac e Cry2Ab2 variou de 14 a 40%. No algodão TwinLink® que expressa as proteínas Cry1Ab e Cry2Ae, a sobrevivência larval das populações foi menor que 20%. O método de F1 screen foi eficiente na detecção de alelos de resistência a Vip3Aa20 em populações de S. frugiperda provenientes de diferentes regiões produtoras de milho no Brasil na safra 2014/2015. De 263 isofamílias testadas, foram detectadas três isofamílias positivas oriundas do Paraná, Mato Grosso e Goiás. A frequência de resistência estimada a Vip3Aa20 variou de 0,0140 a 0,0367 nas populações avaliadas, sendo que a frequência total foi de 0,0076. Neste estudo, fornecemos informações para refinar as estratégias de MRI, além de introduzir novas técnicas para monitorar a resistência de S. frugiperda a tecnologias Bt no Brasil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We sampled leaves from 678 individuals in 21 natural populations (30-36 individuals per population), covering the entire distribution of Euptelea pleiospermum in China.Total DNA was isolated from about 50 mg powdered leaf tissue following the protocol of a DNA extraction kit (Tiangen Biotech Co., LTD., Beijing, China). We used seven fluorescence-labeled microsatellite loci (EP036, EP059, EP081, EP087, EP091, EP278 and EP294; Zhang et al., 2008) to genotype our 678 DNA samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural flower induction is a major pineapple industry problem. It usually occurs when shortening days and low temperatures give raise to increased ethylene production in the leaf tissue and plant stem apex which in turn stimulates flowering. Natural flowering fruit matures 4 to 6 weeks ahead of the normal summer harvest resulting in the need for extra harvest passes and considerable yield losses. Ethylene is produced through the sequential action of ACC synthase and ACC oxidase. Our team has cloned an ACC synthase gene from pineapple (ACACS2), which is expressed in meristems and activated under the environmental conditions that induce flowering in nature. Genetic constructs have been produced containing ACACS2 in sense orienta¬tion to induce silencing of the host gene in the plant by co-suppression mechanisms. Two independent lines of transgenic plants have been produced and field trials have been conducted in Queensland for four years in order to study the characteristics of the transgenic lines. We have identified a group of transgenic plants demonstrating inherited flowering delay and confirmed co-suppression of the ACACS2 gene due to methylation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We completed a synoptic survey of iron, phosphorus, and sulfur concentrations in shallow marine carbonate sediments from south Florida. Total extracted iron concentrations typically were 50 μmol g-1 dry weight (DW) and tended to decrease away from the Florida mainland, whereas total extracted phosphorus concentrations mostly were 10 μmol g-1 DW and tended to decrease from west to east across Florida Bay. Concentrations of reduced sulfur compounds, up to 40 μmol g-1 DW, tended to covary with sediment iron concentrations, suggesting that sulfide mineral formation was iron-limited. An index of iron availability derived from sediment data was negatively correlated with chlorophyll a concentrations in surface waters, demonstrating the close coupling of sediment-water column processes. Eight months after applying a surface layer of iron oxide granules to experimental plots, sediment iron, phosphorus, and sulfur were elevated to a depth of 10 cm relative to control plots. Biomass of the seagrass Thalassia testudinum was not different between control and iron addition plots, but individual shoot growth rates were significantly higher in experimental plots after 8 months. Although the iron content of leaf tissues was significantly higher from iron addition plots, no difference in phosphorus content of T. testudinum leaves was observed. Iron addition altered plant exposure to free sulfide, documented by a significantly higher δ34S of leaf tissue from experimental plots relative to controls. Iron as a buffer to toxic sulfides may promote individual shoot growth, but phosphorus availability to plants still appears to limit production in carbonate sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m−2 month−1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differentiation of limiting nutrients within small spatial scales has been observed in coastal mangrove forests, but research on other tropical peatlands suggests it is a more widespread phenomenon. In the Changuinola mire of coastal Panama, oligotrophy was hypothesized to increase along a gradient of peat development (peat doming). Nutrient and carbon concentration of leaf tissue, soil, and soil porewater were characterised over a successive sequence of plant communities along the gradient. Soil phosphorus (P) and nitrogen (N) concentrations decreased from 1200 μg P g−1 and 27 mg N g−1 to 377 μg P g−1 and 22 mg N g−1 within 2.7 km into the mire interior. These changes coincided with an increase in soil and average leaf N:P molar ratios from 52–128 and 24–41, respectively. Soil P was strongly related to leaf P and soil N:P to foliar N:P. There was a wide range in δ15N values for canopy (4.0 to −9.4‰), Campnosperma panamense (4.0 to −7.8‰) and understorey (4.8 to −3.1‰) species. Foliar δ15N values of canopy species were strongly related to soil N:P, soil P and leaf P. The depleted foliar δ15N values appeared to be an effect of both the N atmospheric source and P limitation. Here, P limitation is likely associated with ombrotrophic conditions that developed as hydrologic inputs became dominated by precipitation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morphological, anatomical and physiological plant and leaf traits of A. distorta, an endemic species of the Central Apennines on the Majella Massif, growing at 2,675 m a.s.l, were analyzed. The length of the phenological cycle starts immediately after the snowmelt at the end of May, lasting 128 ± 10 days. The low A. distorta height  (Hmax= 64 ± 4 mm) and total leaf area (TLA= 38 ± 9 cm2) associated to a high leaf mass area (LMA =11.8±0.6 mg cm−2) and a relatively high leaf tissue density (LTD = 124.6±14.3 mg cm−3) seem to be adaptive traits to the stress factors of the environment where it grows. From a physiological point of view, the high A. distorta photosynthetic rates (PN =19.6 ± 2.3 µmol m−2 s−1) and total chlorophyll content (Chla+b = 0.88 ± 0.13 mg g−1) in July are justified by the favorable temperature. PN decreases by 87% in September at the beginning of plant senescence. Photosynthesis and leaf respiration (RD) variations allow A. distorta to maintain a positive carbon balance during the growing season becoming indicative of the efficiency of plant carbon use. The results could be an important tool for conservation programmes of the A. distorta wild populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particles of two isolates of subterranean clover red leaf virus were purified by a method in which infected plant tissue was digested with an industrial-grade cellulase, Celluclast® 2.0 L type X. The yields of virus particles using this enzyme were comparable with those obtained using either of two laboratory-grade cellulases, Cellulase type 1 (Sigma) and Driselase®. However, the specific infectivity or aphid transmissibility of the particles purified using Celluclast® was 10-100 times greater than those of preparations obtained using laboratory-grade cellulases or no enzyme. The main advantage of using Celluclast® is that at present in Australia its cost is only ca. 1% of laboratory-grade cellulases.