884 resultados para joint range of motion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During locomotion, turning is a common and recurring event which is largely neglected in the current state-of-the-art ankle-foot prostheses, forcing amputees to use different steering mechanisms for turning, compared to non-amputees. A better understanding of the complexities surrounding lower limb prostheses will lead to increased health and well-being of amputees. The aim of this research is to develop a steerable ankle-foot prosthesis that mimics the human ankle mechanical properties. Experiments were developed to estimate the mechanical impedance of the ankle and the ankles angles during straight walk and step turn. Next, this information was used in the design of a prototype, powered steerable ankle-foot prosthesis with two controllable degrees of freedom. One of the possible approaches in design of the prosthetic robots is to use the human joints’ parameters, especially their impedance. A series of experiments were conducted to estimate the stochastic mechanical impedance of the human ankle when muscles were fully relaxed and co-contracting antagonistically. A rehabilitation robot for the ankle, Anklebot, was employed to provide torque perturbations to the ankle. The experiments were performed in two different configurations, one with relaxed muscles, and one with 10% of maximum voluntary contraction (MVC). Surface electromyography (sEMG) was used to monitor muscle activation levels and these sEMG signals were displayed to subjects who attempted to maintain them constant. Time histories of ankle torques and angles in the lateral/medial (LM) directions, inversion-eversion (IE), and dorsiflexionplantarflexion (DP) were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated providing an estimate of ankle mechanical impedance. High coherence was observed over a frequency range up to 30 Hz. The main effect of muscle activation was to increase the magnitude of ankle mechanical impedance in all degrees of freedom of the ankle. Another experiment compared the three-dimensional angles of the ankle during step turn and straight walking. These angles were measured to be used for developing the control strategy of the ankle-foot prosthesis. An infrared camera system was used to track the trajectories and angles of the foot and leg. The combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The Range of motion (ROM) in IE increased during turning while ML rotation decreased and DP changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk and progressively showed less plantarflexion. In IE, the ankle showed increased inversion leaning the body toward the inside of the turn. ML rotation initiated with an increased medial rotation during the step turn relative to the straight walk transitioning to increased lateral rotation at the toe off. A prototype ankle-foot prosthesis capable of controlling both DP and IE using a cable driven mechanism was developed and assessed as part of a feasibility study. The design is capable of reproducing the angles required for straight walk and step turn; generates 712N of lifting force in plantarflexion, and shows passive stiffness comparable to a nonload bearing ankle impedance. To evaluate the performance of the ankle-foot prosthesis, a circular treadmill was developed to mimic human gait during steering. Preliminary results show that the device can appropriately simulate human gait with loading and unloading the ankle joint during the gait in circular paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine stiffness and load-displacement curves as a biomechanical response to applied torsion and shear forces in cadaveric canine lumbar and lumbosacral specimens. STUDY DESIGN: Biomechanical study. ANIMALS: Caudal lumbar and lumbosacral functional spine units (FSU) of nonchondrodystrophic large-breed dogs (n=31) with radiographically normal spines. METHODS: FSU from dogs without musculoskeletal disease were tested in torsion in a custom-built spine loading simulator with 6 degrees of freedom, which uses orthogonally mounted electric motors to apply pure axial rotation. For shear tests, specimens were mounted to a custom-made shear-testing device, driven by a servo hydraulic testing machine. Load-displacement curves were recorded for torsion and shear. RESULTS: Left and right torsion stiffness was not different within each FSU level; however, torsional stiffness of L7-S1 was significantly smaller compared with lumbar FSU (L4-5-L6-7). Ventral/dorsal stiffness was significantly different from lateral stiffness within an individual FSU level for L5-6, L6-7, and L7-S1 but not for L4-5. When the data from 4 tested shear directions from the same specimen were pooled, level L5-6 was significantly stiffer than L7-S1. CONCLUSIONS: Increased range of motion of the lumbosacral joint is reflected by an overall decreased shear and rotational stiffness at the lumbosacral FSU. CLINICAL RELEVANCE: Data from dogs with disc degeneration have to be collected, analyzed, and compared with results from our chondrodystrophic large-breed dogs with radiographically normal spines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a simple model for the coupling behavior of the human spine for an inverse kinematics framework. Our spine model exhibits anatomically correct motions of the vertebrae of virtual mannequins by coupling standard swing and revolute joint models. The adjustement of the joints is made with several simple (in)equality constraints, resulting in a reduction of the solution space dimensionality for the inverse kinematics solver. By reducing the solution space dimensionality to feasible spine shapes, we prevent the inverse kinematics algorithm from providing infeasible postures for the spine.In this paper, we exploit how to apply these simple constraints to the human spine by a strict decoupling of the swing and torsion motion of the vertebrae. We demonstrate the validity of our approach on various experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impingement of the lesser trochanter on the ischium or the posterior acetabular rim is not a frequent pathology, but has recently received increased recognition. We have seen 14 cases over a period of 14 years, but concentrate on eight hips showing complex deformities revealing similar characteristics. All eight hips had a residual Perthes or a Perthes-like disease with an elliptically deformed femoral head, but a congurent joint a short or absent femoral neck, a high riding greater trochanter, and a reduced vertical distance between the head and the lesser trochanter. Impingement took place between the lesser trochanter and the ischium or the posteroinferior acetabular border, but was hardly recognisable due to the predominant intraarticular impingement of the nonspherical femoral head and the extraarticular impingement of the greater trochanter. In three cases the impingement showed reproducible subluxation of the hip. While in our hips, excision was the preferred treatment for impingement due to an oversized lesser trochanter, distal advancement was used in the hips with the Perthes morphology; the surgical time was not longer. The overall clinical results in this group however were dominated by a substantial increase in the range of motion (ROM), dependent mainly on the achieved contour of the femoral head and the relative lengthening of the neck. Strength of active hip flexion was normal. Recurrent subluxation disappeared and no complications were recorded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acquisition of conventional X-ray radiographs remains the standard imaging procedure for the diagnosis of hip-related problems. However, recent studies demonstrated the benefit of using three-dimensional (3D) surface models in the clinical routine. 3D surface models of the hip joint are useful for assessing the dynamic range of motion in order to identify possible pathologies such as femoroacetabular impingement. In this paper, we present an integrated system which consists of X-ray radiograph calibration and subsequent 2D/3D hip joint reconstruction for diagnosis and planning of hip-related problems. A mobile phantom with two different sizes of fiducials was developed for X-ray radiograph calibration, which can be robustly detected within the images. On the basis of the calibrated X-ray images, a 3D reconstruction method of the acetabulum was developed and applied together with existing techniques to reconstruct a 3D surface model of the hip joint. X-ray radiographs of dry cadaveric hip bones and one cadaveric specimen with soft tissue were used to prove the robustness of the developed fiducial detection algorithm. Computed tomography scans of the cadaveric bones were used to validate the accuracy of the integrated system. The fiducial detection sensitivity was in the same range for both sizes of fiducials. While the detection sensitivity was 97.96% for the large fiducials, it was 97.62% for the small fiducials. The acetabulum and the proximal femur were reconstructed with a mean surface distance error of 1.06 and 1.01 mm, respectively. The results for fiducial detection sensitivity and 3D surface reconstruction demonstrated the capability of the integrated system for 3D hip joint reconstruction from 2D calibrated X-ray radiographs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A joint reprocessing of GPS, GLONASS and SLR observations has been carried out at TU Dresden, TU Munich, AIUB and ETH Zurich. Common a priori models have been applied for the processing of all types of observation to ensure both consistent parameter estimates and the rigorous combination of microwave and optical measurements. Based on that reprocessing results, we evaluate the impact of adding GLONASS observations to the standard GPS data processing. In particular, changes in station position time series and day boundary overlaps of consecutive satellite arcs are analyzed. In addition, the GNSS orbits derived from microwave measurements are validated using independent SLR range measurements. Our SLR residuals indicate a significant improvement compared to previous results. Furthermore, we evaluate the performance of our high-rate (30s) combined GNSS satellite clocks and discuss associated zero-difference phase residuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The published data on pain and physical function before and after revision of total hip arthroplasty (THA) is scarce. The study reports the course and interrelationships of radiographic loosening, pain and physical function 5 year before and after a first revision THA. Methods: The study was based on the IDES-THA database. All patients with their first THA revision for aseptic loosening and a documented index surgery on the same side and at least one pre-revision and one post-revision follow-up were selected. Only patients with an intact contralateral hip joint (Charnley class-A) were included. Follow-ups within ±5.5 years around the revision time point were analyzed. Annual prevalences of radiographic component loosening and the non-desired outcomes (moderate/severe/intolerable pain, walking <30 minutes, hip flexion range <90°) were calculated. Results: Signs of radiographic component loosening started to increase about 4 years before revision surgery. Two years later, a sharp increase of painful hips from 15% to 80% in the revision year was observed. In the year after revision surgery, this rate dropped back to below 10%. Walking capacity started to noticeably deteriorate 3 years before revision and in the revision year about 65% of patients could not walk longer than 30 minutes. As opposed to pain, walking capacity did not recover to pre-revision levels and the best outcome was only reached two years post-revision. Hip flexion range had the slowest and least extent of deterioration (≈45% flexed <70° in the revision year) but with the best outcomes at only three years after revision surgery it took the longest to recover. Conclusion: Prevalence of radiological loosening signs and/or pain intensity follow an almost parallel course around the first revision of a THA for aseptic component loosening. This process begins about 4 years (radiographic loosening) before the actual revision surgery and intensifies about 2 years later (pain). It also involves walking capacity and hip range of motion. While pain levels go back to levels similar to those after primary surgery, range of motion and even more walking capacity remain moderately compromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare the biomechanical properties of a ventral transarticular lag screw fixation technique, a new dorsal atlantoaxial instability (AAI) clamp, and a new ventral AAI hook plate under sagittal shear loading after transection of the ligaments of the atlantoaxial joint. STUDY DESIGN: Cadaveric biomechanical study. ANIMALS: Canine cadavers (n = 10). MATERIALS AND METHODS: The occipitoatlantoaxial region of Beagles euthanatized for reasons unrelated to the study was prepared leaving only ligamentous structures and the joint capsules between the first 2 cervical vertebrae (C1 and C2). The atlanto-occipital joints were stabilized with 2 transarticular diverging positive threaded K-wires. The occipital bone and the caudal end of C2 were embedded in polymethylmethacrylate and loaded in shear to a force of 50 Newtons. The range of motion (ROM) and neutral zone (NZ) of the atlantoaxial joint were determined after 3 loading cycles with atlantoaxial ligaments intact, after ligament transection, and after fixation with each implant. The testing order of implants was randomly assigned. The implants tested last were subjected to failure testing. RESULTS: All stabilization procedures decreased the ROM and NZ of the atlantoaxial joint compared to transected ligament specimens. Only stabilization with transarticular lag screws and ventral plates produced a significant reduction of ROM compare to intact specimens. CONCLUSION: Fixation with transarticular lag screws and a ventral hook plate was biomechanically similar and provided more rigidity compared to dorsal clamp fixation. Further load cycling to failure tests and clinical studies are required before making clinical recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To report clinical signs, diagnostic imaging findings, and outcome in a dog with traumatic myositis ossificans of the origin of the extensor carpi radialis muscle. STUDY DESIGN Clinical report. ANIMALS An 8-month-old intact female Irish Setter Dog. METHODS After radiographic and computed tomographic evaluation of an osseous proliferation arising from the cranial cortex of the right distal humeral diaphysis, the protruding bone was surgically removed and evaluated by histopathology. RESULTS Traumatic myositis ossificans was successfully treated with surgical removal of the osseous proliferation resulting in improved postoperative range of motion of the right elbow joint. There was no evidence of lameness or abnormal bone regrowth associated with the surgical site radiographically at follow up. CONCLUSION Surgical removal of a traumatic myositis ossificans lesion resulted in full return to function in a young, competitive show dog.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femoroacetabular impingement (FAI) is a dynamic conflict of the hip defined by a pathological, early abutment of the proximal femur onto the acetabulum or pelvis. In the past two decades, FAI has received increasing focus in both research and clinical practice as a cause of hip pain and prearthrotic deformity. Anatomical abnormalities such as an aspherical femoral head (cam-type FAI), a focal or general overgrowth of the acetabulum (pincer-type FAI), a high riding greater or lesser trochanter (extra-articular FAI), or abnormal torsion of the femur have been identified as underlying pathomorphologies. Open and arthroscopic treatment options are available to correct the deformity and to allow impingement-free range of motion. In routine practice, diagnosis and treatment planning of FAI is based on clinical examination and conventional imaging modalities such as standard radiography, magnetic resonance arthrography (MRA), and computed tomography (CT). Modern software tools allow three-dimensional analysis of the hip joint by extracting pelvic landmarks from two-dimensional antero-posterior pelvic radiographs. An object-oriented cross-platform program (Hip2Norm) has been developed and validated to standardize pelvic rotation and tilt on conventional AP pelvis radiographs. It has been shown that Hip2Norm is an accurate, consistent, reliable and reproducible tool for the correction of selected hip parameters on conventional radiographs. In contrast to conventional imaging modalities, which provide only static visualization, novel computer assisted tools have been developed to allow the dynamic analysis of FAI pathomechanics. In this context, a validated, CT-based software package (HipMotion) has been introduced. HipMotion is based on polygonal three-dimensional models of the patient’s pelvis and femur. The software includes simulation methods for range of motion, collision detection and accurate mapping of impingement areas. A preoperative treatment plan can be created by performing a virtual resection of any mapped impingement zones both on the femoral head-neck junction, as well as the acetabular rim using the same three-dimensional models. The following book chapter provides a summarized description of current computer-assisted tools for the diagnosis and treatment planning of FAI highlighting the possibility for both static and dynamic evaluation, reliability and reproducibility, and its applicability to routine clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional kinematic analysis provides quantitative assessment of upper limb motion and is used as an outcome measure to evaluate movement disorders. The aim of the present study is to present a set of kinematic metrics for quantifying characteristics of movement performance and the functional status of the subject during the execution of the activity of daily living (ADL) of drinking from a glass. Then, the objective is to apply these metrics in healthy people and a population with cervical spinal cord injury (SCI), and to analyze the metrics ability to discriminate between healthy and pathologic people. 19 people participated in the study: 7 subjects with metameric level C6 tetraplegia, 4 subjects with metameric level C7 tetraplegia and 8 healthy subjects. The movement was recorded with a photogrammetry system. The ADL of drinking was divided into a series of clearly identifiable phases to facilitate analysis. Metrics describing the time of the reaching phase, the range of motion of the joints analyzed, and characteristics of movement performance such as the efficiency, accuracy and smoothness of the distal segment and inter-joint coordination were obtained. The performance of the drinking task was more variable in people with SCI compared to the control group in relation to the metrics measured. Reaching time was longer in SCI groups. The proposed metrics showed capability to discriminate between healthy and pathologic people. Relative deficits in efficiency were larger in SCI people than in controls. These metrics can provide useful information in a clinical setting about the quality of the movement performed by healthy and SCI people during functional activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Issued: March 21, 1963"--Cover ; "October 31, 1962"--Title page.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Prepared for U.S. Atomic Energy Commission."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various exercises are used to retrain the abdominal muscles in the management of low back pain and other musculoskeletal disorders. However. few studies have directly investigated the activity of all the abdominal muscles or the recruitment of regions of the abdominal muscles during these manoeuvres. This study examined the activity of different regions of transversus abdominis (TrA), obliquus internus (OI) and externus abdominis (OE), and rectus abdominis (RA), and movement of lumbar spine, pelvis and abdomen during inward movement of the lower abdominal wall, abdominal bracing, pelvic tilting, and inward movement of the lower and upper abdominal wall. Inward movement of the lower abdominal wall in supine produced greater activity of TrA compared to OI. OE and RA. During posterior pelvic tilting. middle OI was most active and with abdominal bracing. OE was predominately recruited. Regions of TrA were recruited differentially and in inverse relationship between lumbopelvic motion and TrA electromyography (EMG) was found. This study indicates that inward movement of the abdominal wall in supine produces the most independent activity of TrA relative to the other abdominal muscle, recruitment varies between regions of TrA, and observation of abdominal and lumbopelvic motion may assist in evalation of exercise performance. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: It has been shown that perception of elbow joint position is affected by changes in head and neck position. Further, people with whiplash-associated disorders (WAD) present with deficits in upper limb coordination and movement. Objectives: This study is aimed to determine whether the effect of changes in head position on elbow joint position error (JPE) is more pronounced in people with WAD, and to determine whether this is related to the participant's pain and anxiety levels. Methods: Nine people with chronic and disabling WAD and 11 healthy people participated in this experiment. The ability to reproduce a position at the elbow joint was assessed after changes in the position of the head and neck to 30 degrees, and with the head in the midline. Pain was monitored in WAD participants. Results: Absolute elbow JPE with the head in neutral was not different between WAD and control participants (P = 0.5). Changes in the head and neck position increased absolute elbow JPE in the WAD group (P < 0.05), but did not affect elbow JPE in the control group (P = 0.4). There was a connection between pain during testing and the effect of changes in head position on elbow JPE (P < 0.05). Discussion: Elbow JPE is affected by movement of the head and neck, with smaller angles of neck rotation in people with WAD than in healthy individuals. This observation may explain deficits in upper limb coordination in people with WAD, which may be due to the presence of pain or reduced range of motion in this population.