972 resultados para iterated local search
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A Dissertação trata sobre a política salarial dos professores municipalizados do município de Tucuruí do Estado do Pará. Objetiva avaliar a política salarial dos professores no contexto da municipalização do ensino e tenta contribuir com a avaliação da política educacional no Pará, no período entre 1997 a 2008. Procuramos analisar dinamicamente, a política salarial face ao caráter da política educacional do programa de “descentralização”, desenvolvido nas reformas do Estado brasileiro, executado pelo Ministério da Educação, desde o governo de Fernando Henrique Cardoso. Assim, a investigação atentou para modelos de políticas de financiamento de orientação nacional concentrada no MEC. O estudo aponta contradições na relação do projeto nacional de municipalização com a gestão local em que a política salarial dos professores sofre perdas na remuneração. A questão norteadora do estudo acontece frente à instigação da existência de alterações nos salários dos professores a partir do momento que foram cedidos da rede estadual para o município de Tucurui, local da pesquisa. A partir deste local, analisamos documentos, fatos cotidianos da escola; realizamos entrevistas com os sujeitos da pesquisa como os professores, técnicos, secretário de educação e indicalistas do SINTEPP. Então, o estudo indicou que a política salarial dos professores sofreu alterações; progressiva extinção destes da folha ativa de pagamento da SEDUC e marcas de ilegalidade frente ao ato de cedência ao município que nos fizeram observar um modo imposto na condução da política municipalista no Pará. No contexto desta política avaliamos haver ajustes ideológicos de cunho conservador e neoliberal concretizados nos acordos entre o governo do Estado e a prefeitura.
Resumo:
Em muitos problemas de otimização há dificuldades em alcançar um resultado ótimo ou mesmo um resultado próximo ao valor ótimo em um tempo viável, principalmente quando se trabalha em grande escala. Por isso muitos desses problemas são abordados por heurísticas ou metaheurísticas que executam buscas por melhores soluções dentro do espaço de busca definido. Dentro da computação natural estão os Algoritmos Culturais e os Algoritmos Genéticos, que são considerados metaheurísticas evolutivas que se complementam devido ao mecanismo dual de herança cultura/genética. A proposta do presente trabalho é estudar e utilizar tais mecanismos acrescentando tanto heurísticas de busca local como multipopulações aplicados em problemas de otimização combinatória (caixeiro viajante e mochila), funções multimodais e em problemas restritos. Serão executados alguns experimentos para efetuar uma avaliação em relação ao desempenho desses mecanismos híbridos e multipopulacionais com outros mecanismos dispostos na literatura de acordo com cada problema de otimização aqui abordado.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a mathematical model adapted from literature for the crop rotation problem with demand constraints (CRP-D). The main aim of the present work is to study metaheuristics and their performance in a real context. The proposed algorithms for solution of the CRP-D are a genetic algorithm, a simulated annealing and hybrid approaches: a genetic algorithm with simulated annealing and a genetic algorithm with local search algorithm. A new constructive heuristic was also developed to provide initial solutions for the metaheuristics. Computational experiments were performed using a real planting area and semi-randomly generated instances created by varying the number, positions and dimensions of the lots. The computational results showed that these algorithms determined good feasible solutions in a short computing time as compared with the time spent to get optimal solutions, thus proving their efficacy for dealing with this practical application of the CRP-D.
Resumo:
This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
Preferences are present in many real life situations but it is often difficult to quantify them giving a precise value. Sometimes preference values may be missing because of privacy reasons or because they are expensive to obtain or to produce. In some other situations the user of an automated system may have a vague idea of whats he wants. In this thesis we considered the general formalism of soft constraints, where preferences play a crucial role and we extended such a framework to handle both incomplete and imprecise preferences. In particular we provided new theoretical frameworks to handle such kinds of preferences. By admitting missing or imprecise preferences, solving a soft constraint problem becomes a different task. In fact, the new goal is to find solutions which are the best ones independently of the precise value the each preference may have. With this in mind we defined two notions of optimality: the possibly optimal solutions and the necessary optimal solutions, which are optimal no matter we assign a precise value to a missing or imprecise preference. We provided several algorithms, bases on both systematic and local search approaches, to find such kind of solutions. Moreover, we also studied the impact of our techniques also in a specific class of problems (the stable marriage problems) where imprecision and incompleteness have a specific meaning and up to now have been tackled with different techniques. In the context of the classical stable marriage problem we developed a fair method to randomly generate stable marriages of a given problem instance. Furthermore, we adapted our techniques to solve stable marriage problems with ties and incomplete lists, which are known to be NP-hard, obtaining good results both in terms of size of the returned marriage and in terms of steps need to find a solution.
Resumo:
This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.
Resumo:
In questa tesi viene considerato il problema dei trasporti con costi fissi (FCTP) che, assieme al Traveling Salesman Problem (TSP), è uno dei problemi nobili dell’ottimizzazione combinatoria. Esso generalizza il ben noto problema dei trasporti (TP) imponendo che il costo per spedire prodotti da un’origine ad una destinazione sia composto da un costo fisso ed un costo proporzionale alla quantità spedita. Il FCTP è stato formulato per la prima volta in un articolo di Hirsch e Dantzig (1968) ed è stato da allora oggetto di studio per la ricerca di nuovi e sempre migliori algoritmi di risoluzione. Nessuno dei metodi esatti fin ora pubblicati è in grado di risolvere istanze con più di 15 origini e 15 destinazioni. Solo recentemente, Roberti et al. (2013), in un paper in corso di pubblicazione, hanno presentato un metodo esatto basato su una nuova formulazione matematica del problema, il quale è in grado di risolvere istanze di FCTP con 70 origini e 70 destinazioni. La crescita esponenziale dello sforzo computazionale richiesto dai metodi esatti ne ha confinato l’applicazione a problemi di dimensioni ridotte. Tali limitazioni hanno portato allo studio e alla ricerca di approcci approssimativi, euristici e metaeuristici i quali sfruttano varie strategie di local search. Fra i molteplici metodi euristici presentati in letteratura, meritano particolare attenzione quelli di Sun et al. (1998) e Glover et al. (2005). Recentemente, Buson et al. (2013) hanno presentato un nuovo euristico che domina tutti i precedenti sui problemi test proposti in letteratura. In questa tesi viene presentato un approccio Tabu Search che migliora il metodo originalmente proposto da Sun et al. (1998). I risultati computazionali ottenuti con un codice prototipale indicano che l’algoritmo sviluppato è migliore del metodo originario di Sun et al. (1998) e competitivo con il più recente metodo proposto da Buson et al. (2013).
Resumo:
Il problema della consegna di prodotti da un deposito/impianto ai clienti mediante una flotta di automezzi è un problema centrale nella gestione di una catena di produzione e distribuzione (supply chain). Questo problema, noto in letteratura come Vehicle Routing Problem (VRP), nella sua versione più semplice consiste nel disegnare per ogni veicolo disponibile presso un dato deposito aziendale un viaggio (route) di consegna dei prodotti ai clienti, che tali prodotti richiedono, in modo tale che (i) la somma delle quantità richieste dai clienti assegnati ad ogni veicolo non superi la capacità del veicolo, (ii) ogni cliente sia servito una ed una sola volta, (iii) sia minima la somma dei costi dei viaggi effettuati dai veicoli. Il VRP è un problema trasversale ad una molteplicità di settori merceologici dove la distribuzione dei prodotti e/o servizi avviene mediante veicoli su gomma, quali ad esempio: distribuzione di generi alimentari, distribuzione di prodotti petroliferi, raccolta e distribuzione della posta, organizzazione del servizio scuolabus, pianificazione della manutenzione di impianti, raccolta rifiuti, etc. In questa tesi viene considerato il Multi-Trip VRP, in cui ogni veicolo può eseguire un sottoinsieme di percorsi, chiamato vehicle schedule (schedula del veicolo), soggetto a vincoli di durata massima. Nonostante la sua importanza pratica, il MTVRP ha ricevuto poca attenzione in letteratura: sono stati proposti diversi metodi euristici e un solo algoritmo esatto di risoluzione, presentato da Mingozzi, Roberti e Toth. In questa tesi viene presentato un metodo euristico in grado di risolvere istanze di MTVRP in presenza di vincoli reali, quali flotta di veicoli non omogenea e time windows. L’euristico si basa sul modello di Prins. Sono presentati inoltre due approcci di local search per migliorare la soluzione finale. I risultati computazionali evidenziano l’efficienza di tali approcci.
Resumo:
Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.
Resumo:
Fuzzy community detection is to identify fuzzy communities in a network, which are groups of vertices in the network such that the membership of a vertex in one community is in [0,1] and that the sum of memberships of vertices in all communities equals to 1. Fuzzy communities are pervasive in social networks, but only a few works have been done for fuzzy community detection. Recently, a one-step forward extension of Newman’s Modularity, the most popular quality function for disjoint community detection, results into the Generalized Modularity (GM) that demonstrates good performance in finding well-known fuzzy communities. Thus, GMis chosen as the quality function in our research. We first propose a generalized fuzzy t-norm modularity to investigate the effect of different fuzzy intersection operators on fuzzy community detection, since the introduction of a fuzzy intersection operation is made feasible by GM. The experimental results show that the Yager operator with a proper parameter value performs better than the product operator in revealing community structure. Then, we focus on how to find optimal fuzzy communities in a network by directly maximizing GM, which we call it Fuzzy Modularity Maximization (FMM) problem. The effort on FMM problem results into the major contribution of this thesis, an efficient and effective GM-based fuzzy community detection method that could automatically discover a fuzzy partition of a network when it is appropriate, which is much better than fuzzy partitions found by existing fuzzy community detection methods, and a crisp partition of a network when appropriate, which is competitive with partitions resulted from the best disjoint community detections up to now. We address FMM problem by iteratively solving a sub-problem called One-Step Modularity Maximization (OSMM). We present two approaches for solving this iterative procedure: a tree-based global optimizer called Find Best Leaf Node (FBLN) and a heuristic-based local optimizer. The OSMM problem is based on a simplified quadratic knapsack problem that can be solved in linear time; thus, a solution of OSMM can be found in linear time. Since the OSMM algorithm is called within FBLN recursively and the structure of the search tree is non-deterministic, we can see that the FMM/FBLN algorithm runs in a time complexity of at least O (n2). So, we also propose several highly efficient and very effective heuristic algorithms namely FMM/H algorithms. We compared our proposed FMM/H algorithms with two state-of-the-art community detection methods, modified MULTICUT Spectral Fuzzy c-Means (MSFCM) and Genetic Algorithm with a Local Search strategy (GALS), on 10 real-world data sets. The experimental results suggest that the H2 variant of FMM/H is the best performing version. The H2 algorithm is very competitive with GALS in producing maximum modularity partitions and performs much better than MSFCM. On all the 10 data sets, H2 is also 2-3 orders of magnitude faster than GALS. Furthermore, by adopting a simply modified version of the H2 algorithm as a mutation operator, we designed a genetic algorithm for fuzzy community detection, namely GAFCD, where elite selection and early termination are applied. The crossover operator is designed to make GAFCD converge fast and to enhance GAFCD’s ability of jumping out of local minimums. Experimental results on all the data sets show that GAFCD uncovers better community structure than GALS.