891 resultados para ionosphere variations and disturbances


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of global navigation satellite systems (GNSS) provides a solution of many applied problems with increasingly higher quality and accuracy nowadays. Researches that are carried out by the Bavarian Academy of Sciences and Humanities in Munich (BAW) in the field of airborne gravimetry are based on sophisticated data processing from high frequency GNSS receiver for kinematic aircraft positioning. Applied algorithms for inertial acceleration determination are based on the high sampling rate (50Hz) and on reducing of such factors as ionosphere scintillation and multipath at aircraft /antenna near field effects. The quality of the GNSS derived kinematic height are studied also by intercomparison with lift height variations collected by a precise high sampling rate vertical scale [1]. This work is aimed at the ways of more accurate determination of mini-aircraft altitude by means of high frequency GNSS receivers, in particular by considering their dynamic behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a combination of source-normalized weighted linear discriminant analysis (SN-WLDA) and short utterance variance (SUV) PLDA modelling to improve the short utterance PLDA speaker verification. As short-length utterance i-vectors vary with the speaker, session variations and phonetic content of the utterance (utterance variation), a combined approach of SN-WLDA projection and SUV PLDA modelling is used to compensate the session and utterance variations. Experimental studies have found that a combination of SN-WLDA and SUV PLDA modelling approach shows an improvement over baseline system (WCCN[LDA]-projected Gaussian PLDA (GPLDA)) as this approach effectively compensates the session and utterance variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique combination of landscapes and processes that are present and operate on Fraser Island (K'gari) create a dynamic setting that is capable of recording past environmental events, climate variations and former landscapes. Likewise, its geographic position makes Fraser Island sensitive to those events and processes. Based on optically stimulated luminescence dating, the records archived within the world's largest sand island span a period that has the potential to exceed 750 ka and contain specific records that are of extremely high resolution over the past 40,000 years. This is due to the geographic position of Fraser Island, which lies in the coastal subtropical region of Queensland Australia. Fraser Island is exposed to the open ocean currents of the Coral Sea on the east coast and the waters of Hervey Bay on its western margin and is positioned to receive moisture from the Indo-Australian monsoon, southeast trade winds and experiences occasional tropical and ex-tropical cyclones. We review literature that presents the current level of understanding of sea level change, ecological variation and environmental change on Fraser Island. The previous works illustrate the importance of Fraser Island and may link processes, environments and climates on Fraser Island with global records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We know from anecdote and research, science and art, that human resilience is a powerful, seemingly ubiquitous force. What is needed is a better understanding of the properties, variations, and applications of that concept to health and well-being. In this paper we put forth two definitions of resilience: Sustainability of purpose in the face of stress, and recovery from adversity. We review current thinking in the social sciences on the nature of biological, psychological and socio-community processes that may confer resilience. In doing so, we encourage greater attention to aspects of biopsychosocial resourcefulness as a dimension of influence on health and mental health distinct from measures of risk found in standard models of public health inquiry. Multi-level, longitudinal, and intervention methods are advocated for research and applications of the concept with conceptual guidelines for the examination of laboratory, diary, and community indicator data on manifestations of resilience across the life span.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the co-occurrence of migraine and endometriosis within the largest known collection of families containing multiple women with surgically confirmed endometriosis and in an independent sample of 815 monozygotic and 457 dizygotic female twin pairs. Within the endometriosis families, a significantly increased risk of migrainous headache was observed in women with endometriosis compared to women without endometriosis (odds ratio [OR] 1.57, 95% confidence interval [CI]: 1.12-2.21, P=0.009). Bivariate heritability analyses indicated no evidence for common environmental factors influencing either migraine or endometriosis but significant genetic components for both traits, with heritability estimates of 69 and 49%, respectively. Importantly, a significant additive genetic correlation (r(G) = 0.27, 95% CI: 0.06-0.47) and bivariate heritability (h(2)=0.17, 95% CI: 0.08-0.27) was observed between migraine and endometriosis. Controlling for the personality trait neuroticism made little impact on this association. These results confirm the previously reported comorbidity between migraine and endometriosis and indicate common genetic influences completely explain their co-occurrence within individuals. Given pharmacological treatments for endometriosis typically target hormonal pathways and a number of findings provide support for a relationship between hormonal variations and migraine, hormone-related genes and pathways are highly plausible candidates for both migraine and endometriosis. Therefore, taking into account the status of both migraine and endometriosis may provide a novel opportunity to identify the genes underlying them. Finally, we propose that the analysis of such genetically correlated comorbid traits can increase power to detect genetic risk loci through the use of more specific, homogenous and heritable phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous and collocated measurements of total and hemispherical backscattering coefficients (σ and β, respectively) at three wavelengths, mass size distributions, and columnar spectral aerosol optical depth (AOD) were made onboard an extensive cruise experiment covering, for the first time, the entire Bay of Bengal (BoB) and northern Indian Ocean. The results are synthesized to understand the optical properties of aerosols in the marine atmospheric boundary layer and their dependence on the size distribution. The observations revealed distinct spatial and spectral variations of all the aerosol parameters over the BoB and the presence of strong latitudinal gradients. The size distributions varied spatially, with the majority of accumulation modes decreasing from north to south. The scattering coefficient decreased from very high values (resembling those reported for continental/urban locations) in the northern BoB to very low values seen over near-pristine environments in the southeastern BoB. The average mass scattering efficiency of BoB aerosols was found to be 2.66 ± 0.1 m2 g−1 at 550 nm. The spectral dependence of columnar AOD deviated significantly from that of the scattering coefficients in the northern BoB, implying vertical heterogeneity in the aerosol type in that region. However, a more homogeneous scenario was observed in the southern BoB. Simultaneous lidar and in situ measurements onboard an aircraft over the ocean revealed the presence of elevated aerosol layers of enhanced extinction at altitudes of 1 to 3 km with an offshore extent of a few hundred kilometers. Back-trajectory analyses showed these layers to be associated with advection from west Asia and western India. The large spatial variations and vertical heterogeneity in aerosol properties, revealed by the present study, need to be included in the regional radiative forcing over the Bay of Bengal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every year, approximately 62 000 people with stroke and transient ischemic attack are treated in Canadian hospitals, and the evidence suggests one-third or more will experience vascular-cognitive impairment, and/or intractable fatigue, either alone or in combination. The 2015 update of the Canadian Stroke Best Practice Recommendations: Mood, Cognition and Fatigue Module guideline is a comprehensive summary of current evidence-based recommendations for clinicians in a range of settings, who provide care to patients following stroke. The three consequences of stroke that are the focus of the this guideline (poststroke depression, vascular cognitive impairment, and fatigue) have high incidence rates and significant impact on the lives of people who have had a stroke, impede recovery, and result in worse long-term outcomes. Significant practice variations and gaps in the research evidence have been reported for initial screening and in-depth assessment of stroke patients for these conditions. Also of concern, an increased number of family members and informal caregivers may also experience depressive symptoms in the poststroke recovery phase which further impact patient recovery. These factors emphasize the need for a system of care that ensures screening occurs as a standard and consistent component of clinical practice across settings as stroke patients transition from acute care to active rehabilitation and reintegration into their community. Additionally, building system capacity to ensure access to appropriate specialists for treatment and ongoing management of stroke survivors with these conditions is another great challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both inherited genetic variations and somatically acquired mutations drive cancer development. The aim of this thesis was to gain insight into the molecular mechanisms underlying colorectal cancer (CRC) predisposition and tumor progression. Whereas one-third of CRC may develop in the context of hereditary predisposition, the known highly penetrant syndromes only explain a small fraction of all cases. Genome-wide association studies have shown that ten common single nucleotide polymorphisms (SNPs) modestly predispose to CRC. Our population-based sample series of around thousand CRC cases and healthy controls was genotyped for these SNPs. Tumors of heterozygous patients were analyzed for allelic imbalance, in an attempt to reveal the role of these SNPs in somatic tumor progression. The risk allele of rs6983267 at 8q24 was favored in the tumors significantly more often than the neutral allele, indicating that this germline variant is somatically selected for. No imbalance targeting the risk allele was observed in the remaining loci, suggesting that most of the low-penetrance CRC SNPs mainly play a role in the early stages of the neoplastic process. The ten SNPs were further analyzed in 788 CRC cases, 97 of which had a family history of CRC, to evaluate their combined contribution. A significant association appeared between the overall number of risk alleles and familial CRC and these ten SNPs seem to explain around 9% of the familial clustering of CRC. Finding more CRC susceptibility alleles may facilitate individualized risk prediction and cancer prevention in the future. Microsatellite instability (MSI), resulting from defective mismatch repair function, is a hallmark of Lynch syndrome and observed in a subset of all CRCs. Our aim was to identify microsatellite frameshift mutations that inactivate tumor suppressor genes in MSI CRCs. By sequencing microsatellite repeats of underexpressed genes we found six novel MSI target genes that were frequently mutated in 100 MSI CRCs: 51% in GLYR1, 47% in ABCC5, 43% in WDTC1, 33% in ROCK1, 30% in OR51E2, and 28% in TCEB3. Immunohistochemical staining of GLYR1 revealed defective protein expression in homozygously mutated tumors, providing further support for the loss of function hypothesis. Another mutation screening effort sought to identify MSI target genes with putative oncogenic functions. Microsatellites were similarly sequenced in genes that were overexpressed and, upon mutation, predicted to avoid nonsense-mediated mRNA decay. The mitotic checkpoint kinase TTK harbored protein-elongating mutations in 59% of MSI CRCs and the mutant protein was detected in heterozygous MSI CRC cells. No checkpoint dysregulation or defective protein localization was observable however, and the biological relevance of this mutation may hence be related to other mechanisms. In conclusion, these two large-scale and unbiased efforts identified frequently mutated genes that are likely to contribute to the development of this cancer type and may be utilized in developing diagnostic and therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the influence of ambient aerosol particles on cloud formation, climate and human health, detailed information about the concentration and composition of ambient aerosol particles is needed. The dura-tion of aerosol formation, growth and removal processes in the atmosphere range from minutes to hours, which highlights the need for high-time-resolution data in order to understand the underlying processes. This thesis focuses on characterization of ambient levels, size distributions and sources of water-soluble organic carbon (WSOC) in ambient aerosols. The results show that in the location of this study typically 50-60 % of organic carbon in fine particles is water-soluble. The amount of WSOC was observed to increase as aerosols age, likely due to further oxidation of organic compounds. In the boreal region the main sources of WSOC were biomass burning during the winter and secondary aerosol formation during the summer. WSOC was mainly attributed to a fine particle mode between 0.1 - 1 μm, although different size distributions were measured for different sources. The WSOC concentrations and size distributions had a clear seasonal variation. Another main focus of this thesis was to test and further develop the high-time-resolution methods for chemical characterization of ambient aerosol particles. The concentrations of the main chemical components (ions, OC, EC) of ambient aerosol particles were measured online during a year-long intensive measurement campaign conducted on the SMEAR III station in Southern Finland. The results were compared to the results of traditional filter collections in order to study sampling artifacts and limitations related to each method. To achieve better a time resolution for the WSOC and ion measurements, a particle-into-liquid sampler (PILS) was coupled with a total organic carbon analyzer (TOC) and two ion chromatographs (IC). The PILS-TOC-IC provided important data about diurnal variations and short-time plumes, which cannot be resolved from the filter samples. In summary, the measurements made for this thesis provide new information on the concentrations, size distribu-tions and sources of WSOC in ambient aerosol particles in the boreal region. The analytical and collection me-thods needed for the online characterization of aerosol chemical composition were further developed in order to provide more reliable high-time-resolution measurements.