974 resultados para intra-specific hybrids
Resumo:
We have investigated genetic parentage in a Swiss population of tawny owls (Strix aluco). To this end, we performed genetic analysis for six polymorphic loci of 49 avian microsatellite loci tested for cross-species amplification. We found one extra-pair young out of 137 (0.7%) nestlings in 37 families (2.7%). There was no intra-specific brood parasitism. Our results are in accordance with previous findings for other raptors and owls that genetic monogamy is the rule. Female tawny owls cannot raise offspring without a substantial contribution by their mates. Hence one favoured hypothesis is that high paternal investment in reproduction selects for behaviour that prevents cuckoldry.
Resumo:
Echinococcus multilocularis is characterised by a wide geographical distribution, encompassing three continents (North America, Asia and Europe) yet very low genetic variability is documented. Recently, this parasite has been detected in red foxes (Vulpes vulpes) circulating in an Alpine region of Italy, close to Austria. This finding raised the question as to whether an autochthonous cycle exists in Italy or whether the infected foxes originated from the neighbouring regions of Austria. Studies have shown that multi-locus microsatellite analysis can identify genomic regions carrying mutations that result in a local adaptation. We used a tandem repeated multi-locus microsatellite (EmsB) to evaluate the genetic differences amongst adult worms of E. multilocularis collected in Italy, worms from neighbouring Austria and from other European and extra-European countries. Fluorescent PCR was performed on a panel of E. multilocularis samples to assess intra-specific polymorphism. The analysis revealed four closed genotypes for Italian samples of E. multilocularis which were unique compared with the other 25 genotypes from Europe and the five genotypes from Alaska. An analysis in the Alpine watershed, comparing Italian adult worms with those from neighbouring areas in Austria, showed a unique cluster for Italian samples. This result supports the hypothesis of the presence of an autochthonous cycle of E. multilocularis in Italy. EmsB can be useful for 'tracking' the source of infection of this zoonotic parasite and developing appropriate measures for preventing or reducing the risk of human alveolar echinococcosis.
Resumo:
Tef [Eragrostis tef (Zucc.) Trotter] is an important staple food crop, especially in Ethiopia where it is annually grown on 2.8 million hectares of land. It is important for food security in the region, in spite of having a low yield, mainly due to lodging. In this study, 15 representative landraces as well as three improved varieties have been selected for in-depth characterization of many parameters, especially those implicated in yield. The genotypes were clustered into six groups, mainly based on agronomic traits and about 80% of the diversity in the genotypes could be explained on the basis of four principal components. In general, all traits investigated showed substantial diversity among genotypes, offering high chances for improving tef through direct selection or intra-specific hybridization. Moreover, in view of climatic changes, breeding with early maturing landraces such as Red dabi or Karadebi would be advantageous to cope with moisture scarcity during the later stage of crop maturity.
Resumo:
Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1-G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1-G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6-G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.
Resumo:
In recent years, there has been a renewed interest in the ecological consequences of individual trait variation within populations. Given that individual variability arises from evolutionary dynamics, to fully understand eco-evolutionary feedback loops, we need to pay special attention to how standing trait variability affects ecological dynamics. There is mounting empirical evidence that intra-specific phenotypic variation can exceed species-level means, but theoretical models of multi-trophic species coexistence typically neglect individual-level trait variability. What is needed are multispecies datasets that are resolved at the individual level that can be used to discriminate among alternative models of resource selection and species coexistence in food webs. Here, using one the largest individual-based datasets of a food web compiled to date, along with an individual trait-based stochastic model that incorporates Approximate Bayesian computation methods, we document intra-population variation in the strength of prey selection by different classes or predator phenotypes which could potentially alter the diversity and coexistence patterns of food webs. In particular, we found that strongly connected individual predators preferentially consumed common prey, whereas weakly connected predators preferentially selected rare prey. Such patterns suggest that food web diversity may be governed by the distribution of predator connectivity and individual trait variation in prey selection. We discuss the consequences of intra-specific variation in prey selection to assess fitness differences among predator classes (or phenotypes) and track longer term food web patterns of coexistence accounting for several phenotypes within each prey and predator species.
Resumo:
The majority of global ocean production and total export production is attributed to oligotrophic oceanic regions due to their vast regional expanse. However, energy transfers, food-web structures and trophic relationships in these areas remain largely unknown. Regional and vertical inter- and intra-specific differences in trophic interactions and dietary preferences of calanoid copepods were investigated in four different regions in the open eastern Atlantic Ocean (38°N to 21°S) in October/November 2012 using a combination of fatty acid (FA) and stable isotope (SI) analyses. Mean carnivory indices (CI) based on FA trophic markers generally agreed with trophic positions (TP) derived from d15N analysis. Most copepods were classified as omnivorous (CI ~0.5, TP 1.8 to ~2.5) or carnivorous (CI >=0.7, TP >=2.9). Herbivorous copepods showed typical CIs of <=0.3. Geographical differences in d15N values of epi- (200-0 m) to mesopelagic (1000-200 m) copepods reflected corresponding spatial differences in baseline d15N of particulate organic matter from the upper 100 m. In contrast, species restricted to lower meso- and bathypelagic (2000-1000 m) layers did not show this regional trend. FA compositions were species-specific without distinct intra-specific vertical or spatial variations. Differences were only observed in the southernmost region influenced by the highly productive Benguela Current. Apparently, food availability and dietary composition were widely homogeneous throughout the oligotrophic oceanic regions of the tropical and subtropical Atlantic. Four major species clusters were identified by principal component analysis based on FA compositions. Vertically migrating species clustered with epi- to mesopelagic, non-migrating species, of which only Neocalanus gracilis was moderately enriched in lipids with 16% of dry mass (DM) and stored wax esters (WE) with 37% of total lipid (TL). All other species of this cluster had low lipid contents (< 10% DM) without WE. Of these, the tropical epipelagic Undinula vulgaris showed highest portions of bacterial markers. Rhincalanus cornutus, R. nasutus and Calanoides carinatus formed three separate clusters with species-specific lipid profiles, high lipid contents (>=41% DM), mainly accumulated as WE (>=79% TL). C. carinatus and R. nasutus were primarily herbivorous with almost no bacterial input. Despite deviating feeding strategies, R. nasutus clustered with deep-dwelling, carnivorous species, which had high amounts of lipids (>=37% DM) and WE (>=54% TL). Tropical and subtropical calanoid copepods exhibited a wide variety of life strategies, characterized by specialized feeding. This allows them, together with vertical habitat partitioning, to maintain high abundance and diversity in tropical oligotrophic open oceans, where they play an essential role in the energy flux and carbon cycling.
Resumo:
Question: How do tree species identity, microhabitat and water availability affect inter- and intra-specific interactions between juvenile and adult woody plants? Location: Continental Mediterranean forests in Alto Tajo Natural Park, Guadalajara, Spain. Methods: A total of 2066 juveniles and adults of four co-occurring tree species were mapped in 17 plots. The frequency of juveniles at different microhabitats and water availability levels was analysed using log-linear models. We used nearest-neighbour contingency table analysis of spatial segregation and J-functions to describe the spatial patterns. Results: We found a complex spatial pattern that varied according to species identity and microhabitat. Recruitment was more frequent in gaps for Quercus ilex, while the other three species recruited preferentially under shrubs or trees depending on the water availability level. Juveniles were not spatially associated to conspecific adults, experiencing segregation from them inmany cases. Spatial associations, both positive and negative, were more common at higher water availability levels. Conclusions: Our results do not agree with expectations from the stressgradient hypothesis, suggesting that positive interactions do not increase in importance with increasing aridity in the study ecosystem. Regeneration patterns are species-specific and depend on microhabitat characteristics and dispersal strategies. In general, juveniles do not look for conspecific adult protection. This work contributes to the understanding of species co-existence, proving the importance of considering a multispecies approach at several plots to overcome limitations of simple pair-wise comparisons in a limited number of sites.
Resumo:
Abstract The cloud forest is a special type of forest ecosystem that depends on suitable conditions of humidity and temperature to exist; hence, it is a very fragile ecosystem. The cloud forest is also one of the richest ecosystems in terms of species diversity and rate of endemism. However, today, it is one of the most threatened ecosystems in the world. Little is known about tree species distribution and coexistence among cloud forest trees. Trees are essential to understanding ecosystem functioning and maintenance because they support the ecosystem in important ways. For this dissertation, an analysis of woody plant species distribution at a small scale in a north-Peruvian Andean cloud forest was performed, and some of the factors implicated in the observed patterns were identified. Towards that end, different natural factors acting on species distribution within the forest were investigated: (i) intra-specific arrangements, (ii) heterospecific spatial relationships and (iii) relationships with external environmental factors. These analyses were conducted first on standing woody plants and then on seedlings. The woody plants were found to be clumped in the forest, either considering all the species together or each species separately. However, each species presented a specific pattern and specific spatial relationship among different-age individuals. Dispersal mode, growth form and shade tolerance played roles in the final distribution of the species. Furthermore, spatial associations among species, either positive or negative, were observed. These associations were more numerous when considering individuals of the interacting species at different developmental stages, i.e., younger individuals from one species and older individuals from another. Accordingly, competition and facilitation are asymmetric processes and vary throughout the life of an individual. Moreover, some species appear to prefer certain habitat conditions and avoid other habitats. The habitat definition that best explains species distribution is that which includes both environmental and stand characteristics; thus, a combination of these factors is necessary to understanding species' niche preferences. Seedling distribution was also associated with habitat conditions, but these conditions explained less than the 30% of the spatial variation. The position of conspecific adult individuals also affected seedling distribution; although the seedlings of many tree species avoid the vicinity of conspecifics, a few species appeared to prefer the formation of cohorts around their parent trees. The importance of habitat conditions and distance dependence with conspecifics varied among regions within the forest as well as on the developmental stage of the stand. The results from this thesis suggest that different species can coexist within a given space, forming a “puzzle” of species as a result of the intra- and interspecific spatial relationships along with niche preferences and adaptations that operate at different scales. These factors not only affect each species in a different way, but specific preferences also vary throughout species' lifespans. Resumen Resumen El bosque de niebla es uno de los ecosistemas más amenazados del mundo además de ser uno de los más frágiles. Son formaciones azonales que dependen de la existencia de unas condiciones de humedad y temperatura que permitan la formación de nubes que cubran el bosque; lo que dificulta en gran medida su conservación. También es uno de los ecosistemas con mayor riqueza de especies además de tener uno de los mayores porcentajes de endemismos. Uno de los aspectos más importantes para entender el ecosistema, es identificar y entender los elementos que lo componen y los mecanismos que regulan las relaciones entre ellos. Los árboles son el soporte del ecosistema. Sin embargo, apenas hay información sobre la distribución y coexistencia de los árboles en los bosques de niebla. Esta tesis presenta un análisis de la distribución a pequeña escala de las plantas leñosas en un bosque de niebla situado en la cordillera andina del norte de Perú; así como el análisis de algunos de los factores que pueden estar implicados en que se origine la distribución observada. Para este propósito se estudia cómo influyen factores de diferente naturaleza en la distribución de las especies (i) organización intra-específica (ii) relaciones espaciales heterospecíficas y (iii) relación con factores ambientales externos. En estos análisis se estudiaron primero las plantas jóvenes y las adultas, y después las plántulas. Los árboles aparecieron agregados en el bosque, tanto considerando todos a la vez como cuando se estudió cada especie por separado. Sin embargo, cada especie mostró un patrón distinto así como una particular relación espacial entre individuos jóvenes y adultos. El modo de dispersión, la forma de vida y la tolerancia de la especies estuvieron relacionados con el patrón general observado. Se vio también que ciertas especies aparecían relacionadas con otras, tanto de forma positiva (compartiendo zonas) como negativa (apareciendo en áreas distintas). Las asociaciones fueron mucho más numerosas cuando se consideraron los pares de especies en diferente estado de desarrollo, es decir, individuos jóvenes de una especie e individuos mayores de la otra. Eso indicaría que los procesos de competencia y facilitación son asimétricos y además varían durante la vida de la planta. Por otro lado, algunas especies aparecen preferentemente bajo ciertas condiciones de hábitat y evitan otras. La definición de hábitat a la que mejor responden las especies es cuando se incluyen tanto variables ambientales como de masa; así que ambos tipos de variables son necesarias para entender la preferencia de las especies por ciertos nichos. La distribución de las plántulas también estuvo relacionada con condiciones de hábitat, pero eso sólo llegaba a explicar hasta un 30% de la variabilidad espacial. La posición de los adultos de la misma especie también afectó a la distribución de las plántulas. En bastantes especies las plántulas evitan la cercanía de adultos de su misma especie, padres potenciales, aunque algunas especies aisladas mostraron el patrón contrario y aparecieron preferentemente en las mismas áreas que sus padres. La importancia de las condiciones de hábitat y posición de los adultos en la disposición de las plántulas varía de una zona a otra del bosque y además también varía según el estado de desarrollo de la masa.
Resumo:
El impacto negativo que tienen los virus en las plantas hace que estos puedan ejercer un papel ecológico como moduladores de la dinámica espacio-temporal de las poblaciones de sus huéspedes. Entender cuáles son los mecanismos genéticos y los factores ambientales que determinan tanto la epidemiología como la estructura genética de las poblaciones de virus puede resultar de gran ayuda para la comprensión del papel ecológico de las infecciones virales. Sin embargo, existen pocos trabajos experimentales que hayan abordado esta cuestión. En esta tesis, se analiza el efecto de la heterogeneidad del paisaje sobre la incidencia de los virus y la estructura genética de sus poblaciones. Asimismo, se explora como dichos factores ambientales influyen en la importancia relativa que los principales mecanismos de generación de variabilidad genética (mutación, recombinación y migración) tienen en la evolución de los virus. Para ello se ha usado como sistema los begomovirus que infectan poblaciones de chiltepín (Capsicum annuum var. aviculare (Dierbach) D´Arcy & Eshbaugh) en México. Se analizó la incidencia de diferentes virus en poblaciones de chiltepín distribuidas a lo largo de seis provincias biogeográficas, representando el área de distribución de la especie en México, y localizadas en hábitats con diferente grado de intervención humana: poblaciones sin intervención humana (silvestres); poblaciones toleradas (lindes y pastizales), y poblaciones manejadas por el hombre (monocultivos y huertos familiares). Entre los virus analizados, los begomovirus mostraron la mayor incidencia, detectándose en todas las poblaciones y años de muestreo. Las únicas dos especies de begomovirus que se encontraron infectando al chiltepín fueron: el virus del mosaico dorado del chile (Pepper golden mosaic virus, PepGMV) y el virus huasteco del amarilleo de venas del chile (Pepper huasteco yellow vein virus, PHYVV). Por ello, todos los análisis realizados en esta tesis se centran en estas dos especies de virus. La incidencia de PepGMV y PHYVV, tanto en infecciones simples como mixtas, aumento cuanto mayor fue el nivel de intervención humana en las poblaciones de chiltepín, lo que a su vez se asoció con una menor biodiversidad y una mayor densidad de plantas. Además, la incidencia de infecciones mixtas, altamente relacionada con la presencia de síntomas, fue también mayor en las poblaciones cultivadas. La incidencia de estos dos virus también varió en función de la población de chiltepín y de la provincia biogeográfica. Por tanto, estos resultados apoyan una de las hipótesis XVI clásicas de la Patología Vegetal según la cual la simplificación de los ecosistemas naturales debida a la intervención humana conduce a un mayor riesgo de enfermedad de las plantas, e ilustran sobre la importancia de la heterogeneidad del paisaje a diferentes escalas en la determinación de patrones epidemiológicos. La heterogeneidad del paisaje no solo afectó a la epidemiología de PepGMV y PHYVV, sino también a la estructura genética de sus poblaciones. En ambos virus, el nivel de diferenciación genética mayor fue la población, probablemente asociado a la capacidad de migración de su vector Bemisia tabaci; y en segundo lugar la provincia biogeográfica, lo que podría estar relacionado con el papel del ser humano como agente dispersor de PepGMV y PHYVV. La estima de las tasas de sustitución nucleotídica de las poblaciones de PepGMV y PHYVV mostró una rápida dinámica evolutiva. Los árboles filogenéticos de ambos virus presentaron una topología en estrella, lo que sugiere una expansión reciente en las poblaciones de chiltepín. La reconstrucción de los patrones de migración de ambos virus indicó que ésta expansión parece haberse producido desde la zona central de México siguiendo un patrón radial, y en los últimos 30 años. Es importante tener en cuenta que el patrón espacial de la diversidad genética de las poblaciones de PepGMV y PHYVV es similar al descrito previamente para el chiltepín lo que podría dar lugar a la congruencia de las genealogías del huésped y la de los virus. Dicha congruencia se encontró cuando se tuvieron en cuenta únicamente las poblaciones de hábitats silvestres y tolerados, lo que probablemente se debe a una codivergencia en el espacio pero no en el tiempo, dado que la evolución de virus y huésped han ocurrido a escalas temporales muy diferentes. Finalmente, el análisis de la frecuencia de recombinación en PepGMV y PHYVV indicó que esta juega un papel importante en la evolución de ambos virus, dependiendo su importancia del nivel de intervención humana de la población de chiltepín. Este factor afectó también a la intensidad de la selección a la que se ven sometidos los genomas de PepGMV y PHYVV. Los resultados de esta tesis ponen de manifiesto la importancia que la reducción de la biodiversidad asociada al nivel de intervención humana de las poblaciones de plantas y la heterogeneidad del paisaje tiene en la emergencia de nuevas enfermedades virales. Por tanto, es necesario considerar estos factores ambientales a la hora de comprender la epidemiologia y la evolución de los virus de plantas.XVII SUMMARY Plant viruses play a key role as modulators of the spatio-temporal dynamics of their host populations, due to their negative impact in plant fitness. Knowledge on the genetic and environmental factors that determine the epidemiology and the genetic structure of virus populations may help to understand the ecological role of viral infections. However, few experimental works have addressed this issue. This thesis analyses the effect of landscape heterogeneity in the prevalence of viruses and the genetic structure of their populations. Also, how these environmental factors influence the relative importance of the main mechanisms for generating genetic variability (mutation, recombination and migration) during virus evolution is explored. To do so, the begomoviruses infecting chiltepin (Capsicum annuum var. aviculare (Dierbach) D'Arcy & Eshbaugh) populations in Mexico were used. Incidence of different viruses in chiltepin populations of six biogeographical provinces representing the species distribution in Mexico was determined. Populations belonged to different habitats according to the level of human management: populations with no human intervention (Wild); populations naturally dispersed and tolerated in managed habitats (let-standing), and human managed populations (cultivated). Among the analyzed viruses, the begomoviruses showed the highest prevalence, being detected in all populations and sampling years. Only two begomovirus species infected chiltepin: Pepper golden mosaic virus, PepGMV and Pepper huasteco yellow vein virus, PHYVV. Therefore, all the analyses presented in this thesis are focused in these two viruses. The prevalence of PepGMV and PHYVV, in single and mixed infections, increased with higher levels of human management of the host population, which was associated with decreased biodiversity and increased plant density. Furthermore, cultivated populations showed higher prevalence of mixed infections and symptomatic plants. The prevalence of the two viruses also varied depending on the chiltepin population and on the biogeographical province. Therefore, these results support a classical hypothesis of Plant Pathology stating that simplification of natural ecosystems due to human management leads to an increased disease risk, and illustrate on the importance of landscape heterogeneity in determining epidemiological patterns. Landscape heterogeneity not only affected the epidemiology of PepGMV and PHYVV, but also the genetic structure of their populations. Both viruses had the highest level of genetic differentiation at the population scale, probably associated with the XVIII migration patterns of its vector Bemisia tabaci, and a second level at the biogeographical province scale, which could be related to the role of humans as dispersal agents of PepGMV and PHYVV. The estimates of nucleotide substitution rates of the virus populations indicated rapid evolutionary dynamics. Accordingly, phylogenetic trees of both viruses showed a star topology, suggesting a recent diversification in the chiltepin populations. Reconstruction of PepGMV and PHYVV migration patterns indicated that they expanded from central Mexico following a radial pattern during the last 30 years. Importantly, the spatial genetic structures of the virus populations were similar to that described previously for the chiltepin, which may result in the congruence of the host and virus genealogies. Such congruence was found only in wild and let-standing populations. This is probably due to a co-divergence in space but not in time, given the different evolutionary time scales of the host and virus populations. Finally, the frequency of recombination detected in the PepGMV and PHYVV populations indicated that this mechanism plays an important role in the evolution of both viruses at the intra-specific scale. The level of human management had a minor effect on the frequency of recombination, but influenced the strength of negative selective pressures in the viral genomes. The results of this thesis highlight the importance of decreased biodiversity in plant populations associated with the level of human management and of landscape heterogeneity on the emergence of new viral diseases. Therefore it is necessary to consider these environmental factors in order to fully understand the epidemiology and evolution of plant viruses.
Resumo:
Plant disease resistance (R) genes confer race-specific resistance to pathogens and are genetically defined on the basis of intra-specific functional polymorphism. Little is known about the evolutionary mechanisms that generate this polymorphism. Most R loci examined to date contain alternate alleles and/or linked homologs even in disease-susceptible plant genotypes. In contrast, the resistance to Pseudomonas syringae pathovar maculicola (RPM1) bacterial resistance gene is completely absent (rpm1-null) in 5/5 Arabidopsis thaliana accessions that lack RPM1 function. The rpm1-null locus contains a 98-bp segment of unknown origin in place of the RPM1 gene. We undertook comparative mapping of RPM1 and flanking genes in Brassica napus to determine the ancestral state of the RPM1 locus. We cloned two B. napus RPM1 homologs encoding hypothetical proteins with ≈81% amino acid identity to Arabidopsis RPM1. Collinearity of genes flanking RPM1 is conserved between B. napus and Arabidopsis. Surprisingly, we found four additional B. napus loci in which the flanking marker synteny is maintained but RPM1 is absent. These B. napus rpm1-null loci have no detectable nucleotide similarity to the Arabidopsis rpm1-null allele. We conclude that RPM1 evolved before the divergence of the Brassicaceae and has been deleted independently in the Brassica and Arabidopsis lineages. These results suggest that functional polymorphism at R gene loci can arise from gene deletions.
Resumo:
Some endophytic fungal genera in Vitis vinifera, including Acremonium, have been reported as antagonists of Plasmopara viticola. Endophytic Acremonium isolates from an asymptomatic grapevine cultivar Inzolia from Italy were identified by morphological features and multigene phylogenies of ITS, 18S and 28S genes, and their intra-specific genomic diversity was analyzed by RAPD analysis. Culture filtrates (CFs) obtained from Acremonium isolates were tested in vitro for their inhibitory activity against the P. viticola sporangia germination. Among 94 isolates, 68 belonged to the Acremonium persicinum and 26 to the Acremonium sclerotigenum. RAPD analysis grouped the A. persicinum isolates into 15 clusters and defined 31 different strains. The A. sclerotigenum isolates, instead, were clustered into 22 groups and represented 25 strains. All A. persicinum CFs inhibited sporangia germination of P. viticola, while not all those of A. sclerotigenum had inhibitory effect. A different degree of inhibition was observed between strains of the same species, while some strains of different species showed identical inhibitory effect. No correlation was found between RAPD groups and inhibitory activity in both Acremonium species.
Resumo:
Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets.
Resumo:
With respect to their sensitivity to ocean acidification, calcifiers such as the coccolithophore Emiliania huxleyi have received special attention, as the process of calcification seems to be particularly sensitive to changes in the marine carbonate system. For E. huxleyi, apparently conflicting results regarding its sensitivity to ocean acidification have been published (Iglesias-Rodriguez et al., 2008a; Riebesell et al., 2000). As possible causes for discrepancies, intra-specific variability and different effects of CO2 manipulation methods, i.e. the manipulation of total alkalinity (TA) or total dissolved inorganic carbon (DIC), have been discussed. While Langer et al. (2009) demonstrate a high degree of intra-specific variability between strains of E. huxleyi, the question whether different CO2 manipulation methods influence the cellular responses has not been resolved yet. In this study, closed TA as well as open and closed DIC manipulation methods were compared with respect to E. huxleyi's CO2-dependence in growth rate, POC- and PIC-production. The differences in the carbonate chemistry between TA and DIC manipulations were shown not to cause any differences in response patterns, while the latter differed between open and closed DIC manipulation. The two strains investigated showed different sensitivities to acidification of seawater, RCC1256 being more negatively affected in growth rates and PIC production than NZEH.
Resumo:
Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.
Resumo:
Characterizing genetic variation by retrospective genotyping of trophy or historical artifacts from endangered species is an important conservation tool. Loss of genetic diversity in top predators such as the white shark Carcharodon carcharias remains an issue, exacerbated in this species by declining, sometimes isolated philopatric populations. We successfully sequenced mitochondrial DNA (mtDNA) D-loop from osteodentine of contemporary South African white shark teeth (from 3 jaws), and from 34 to 129 yr old dried cartilage and skin samples from 1 Pacific Ocean and 5 Mediterranean sharks. Osteodentine-derived sequences from South African fish matched those derived from an individual’s finclips, but were generally of poorer quality than those from skin and cartilage of historical samples. Three haplotypes were identified from historical Mediterranean samples (n = 5); 2 individuals had unique sequences and 3 shared the contemporary Mediterranean haplotype. Placement of previously undescribed mtDNA haplotypes from historical material within both the Mediterranean and Pacific clades fits with the accepted intra-specific phylogeny derived from contemporary material, verifying our approaches. The utility of our methodology is in its provision of additional genetic resources from osteodentine (for species lacking tooth pulp) and cartilage of rare and endangered species held in often uncurated, contemporary and historical dry collections. Such material can usefully supplement estimates of connectivity, population history, and stock viability. We confirm the depauperate haplotype diversity of historical Mediterranean sharks, consistent with founding by a small number of Pacific colonizers. The consequent lack of diversity suggests serious challenges for the maintenance of this top predator and the Mediterranean ecosystem.