960 resultados para insulin-like growth factors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Through overexpression and aberrant activation in many human tumors, the IGF system plays a key role in tumor development and tumor cell proliferation. Different strategies targeting IGF-I receptor (IGFI-R) have been developed, and recent studies demonstrated that combined treatments with cytostatic drugs enhance the potency of anti-IGFI-R therapies. Objective: The objective of the study was to examine the IGFI-R expression status in neuroendocrine tumors of the gastroenteropancreatic system (GEP-NETs) in comparison with healthy tissues and use potential overexpression as a target for novel anti-IGFI-R immunoliposomes. Experimental Design: A human tumor tissue array and samples from different normal tissues were investigated by immunohistochemistry. An IGFI-R antagonistic antibody (1H7) was coupled to the surface of sterically stabilized liposomes loaded with doxorubicin. Cell lines from different tumor entities were investigated for liposomal association studies in vitro. For in vivo experiments, neuroendocrine tumor xenografts were used for evaluation of pharmacokinetic and therapeutic properties of the novel compound. Results: Immunohistochemistry revealed significant IGFI-R overexpression in all investigated GEP-NETs (n = 59; staining index, 229.1 +/- 3.1%) in comparison with normal tissues (115.7 +/- 3.7%). Furthermore, anti-IGFI-R immunoliposomes displayed specific tumor cell association (44.2 +/- 1.6% vs. IgG liposomes, 0.8 +/- 0.3%; P < 0.0001) and internalization in human neuroendocrine tumor cells in vitro and superior antitumor efficacy in vivo (life span 31.5 +/- 2.2 d vs. untreated control, 19 +/- 0.6, P = 0.008). Conclusion: IGFI-R overexpression seems to be a common characteristic of otherwise heterogenous NETs. Novel anti-IGFI-R immunoliposomes have been developed and successfully tested in a preclinical model for human GEP-NETs. Moreover in vitro experiments indicate that usage of this agent could also present a promising approach for other tumor entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: IGF-I plays a central role in metabolism and growth regulation. High IGF-I levels are associated with increased cancer risk and low IGF-I levels with increased risk for cardiovascular disease. Objective: Our objective was to determine the relationship between circulating IGF-I levels and mortality in the general population using random-effects meta-analysis and dose-response metaregression. Data Sources: We searched PubMed, EMBASE, Web of Science, and Cochrane Library from 1985 to September 2010 to identify relevant studies. Study Selection: Population-based cohort studies and (nested) case-control studies reporting on the relation between circulating IGF-I and mortality were assessed for eligibility. Data Extraction: Data extraction was performed by two investigators independently, using a standardized data extraction sheet. Data Synthesis: Twelve studies, with 14,906 participants, were included. Overall, risk of bias was limited. Mortality in subjects with low or high IGF-I levels was compared with mid-centile reference categories. All-cause mortality was increased in subjects with low as well as high IGF-I, with a hazard ratio (HR) of 1.27 (95% CI = 1.08–1.49) and HR of 1.18 (95% CI = 1.04–1.34), respectively. Dose-response metaregression showed a U-shaped relation of IGF-I and all-cause mortality (P = 0.003). The predicted HR for the increase in mortality comparing the 10th IGF-I with the 50th percentile was 1.56 (95% CI = 1.31–1.86); the predicted HR comparing the 90th with the 50th percentile was 1.29 (95% CI = 1.06–1.58). A U-shaped relationship was present for both cancer mortality and cardiovascular mortality. Conclusions: Both low and high IGF-I concentrations are associated with increased mortality in the general population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many metabolic hormones, growth hormone (GH), insulin-like growth factor-I (IGF-I) and insulin affect ovarian functions. However, whether ovarian steroid hormones affect metabolic hormones in cattle remains unknown. This study aimed to determine the effect of sex steroids on the plasma profiles of GH, IGF-I and insulin and their receptors in the liver and adipose tissues of dairy cows. Ovariectomized cows (n = 14) were randomly divided into four groups: control group (n = 3) was treated with saline on Day 0; oestradiol (E2) group (n = 3), with saline and 1 mg oestradiol benzoate (EB) on Day 0 and 5, respectively; progesterone (P4) group (n = 4) with two CIDRs (Pfizer Inc., Tokyo, Japan) from Day 0; and E2 + P4 group (n = 4) with two CIDRs on Day 0 that were removed on Day 6 and were immediately injected with 1 mg EB. The animals were euthanized after the experiment, and liver and adipose tissues samples were quantitatively analysed using real-time PCR for the expression of mRNA for the GH (GHR), IGF-I (IGFR-I) and insulin (IR) receptor mRNAs. Oestradiol benzoate significantly increased the number of peaks (p < 0.05), pulse amplitude (p < 0.05) and area under the curve (AUC; p < 0.01) for plasma GH; moreover, it increased plasma IGF-I concentration (p < 0.05), but it had no effect on the plasma insulin profile. P4 significantly decreased the AUC (p < 0.01), compared with the control group, whereas it did not affect the number of peaks and the amplitude of GH pulses. P4 + E2 did not affect the GH pulse profile. E2 increased the mRNA expression of GHR, IGFR-I and IR in the liver (p < 0.05), whereas both P4 and E2 + P4 did not change their expressions. Our results provide evidence that the metabolic and reproductive endocrine axes may regulate each other to ensure optimal reproductive and metabolic function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) signaling system plays a crucial role in human cancer and the IGF-1 receptor (IGF-1R) is an attractive drug target against which a variety of novel anti-tumor agents are being developed. Deregulation of the IGF signaling pathway frequently occurs in human cancer and involves the establishment of autocrine loops comprising IGF-1 or IGF-2 and/or IGF-1R over-expression. Epidemiologic studies have documented a link between elevated IGF levels and the development of solid tumors, such as breast, colon, and prostate cancer. Anti-cancer strategies targeting the IGF signaling system involve two main approaches, namely neutralizing antibodies and small molecule inhibitors of the IGF-1R kinase activity. There are numerous reports describing anti-tumor activity of these agents in pre-clinical models of major human cancers. In addition, multiple clinical trials have started to evaluate the safety and efficacy of selected IGF-1R inhibitors, in combination with standard chemotherapeutic regimens or other targeted agents in cancer patients. In this mini review, I will discuss the role of the IGF signaling system in human cancer and the main strategies which have been so far evaluated to target the IGF-1R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Patients taking immunosuppressants after transplantation may require intestinal surgery. Mycophenolate mofetil (MMF) has been found to impair the healing of colonic anastomoses in rats. This study examined whether insulin-like growth factor (IGF) I prevents MMF impairment of anastomotic healing. METHODS: Sixty-three rats were divided into three groups (MMF, MMF/IGF and control). Animals underwent a sigmoid colon anastomosis with a 6/0 suture, and were killed on days 2, 4 and 6 after surgery. Investigations included bursting pressure measurement, morphometric analysis, and assessment of mucosal proliferation by 5-bromo-2'-deoxyuridine and Ki67 immunohistochemistry of the anastomoses. RESULTS: The leak rate was three of 21, one of 20 and two of 20 in the MMF, MMF/IGF-I and control groups respectively. Anastomotic bursting pressures were significantly lower in the MMF group than in the control group on days 2 and 4, but there was no significant difference by day 6. Values in the MMF/IGF-I and control groups were similar. Colonic crypt depth was significantly reduced in MMF-treated animals on days 2 and 4, but this impairment was attenuated by IGF-I on day 4. Similarly, IGF-I reduced the negative impact of MMF on mucosal proliferation on days 2 and 6. CONCLUSION: Exogenous IGF-I improves some aspects of MMF-impaired anastomotic healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) is a major anabolic regulator in articular cartilage. The IGF-binding proteins (IGFBPs) are increased during osteoarthritis (OA), but the function of the later proteins remains unknown. In general, the IGFBPs are pluripotential effectors capable of IGF regulation and of acting on their own to control key cell functions, including survival and proliferation. The independent functions are often associated with their cell location, and therefore this study explores the distribution of IGFBP-2 and IGFBP-3 in articular chondrocytes. Immunohistochemistry was used to localize IGFBP-2 in normal human articular cartilage. Bovine chondrocytes were used for subcellular fractionation (hypotonic cell lysis) under nonreducing conditions and nuclear purification (centrifugation on sucrose cushions). Cell fraction markers and IGFBPs were assayed in the subcellular fractions by Western immunoblot. The IHC results showed association of IGFBP-2 with chondrocytes, but not with the nuclei. Subcellular fractionation of isolated chondrocytes yielded intact nuclei as assessed at the light microscopic level; the nuclear marker histone H1 was exclusively associated with this fraction. More than 90% of the cytoplasmic marker GAPDH and all the detectable IGFBP-2 were in the cytoplasmic fraction. Immunoreactive IGFBP-3 was found in the cytoplasmic and peri-nuclear/nuclear fractions. Chondrocytes contain intracellular IGFBP-2 and IGFBP-3 but only IGFBP-3 is associated with nuclei. This suggests the hypothesis that the actions of these IGFBPs in articular cartilage extend beyond the classic modulation of IGF receptor action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastomas (GBM), in which uncontrolled cell proliferation, angiogenesis, invasion and anti-apoptosis are hallmarks. Using the glia-specific gene transfer transgenic mouse and the stable LN229(BP2) GBM cell lines, we found that IGFBP2 by itself cannot transform cells in vitro and in vivo. IGFBP2 had growth inhibitory effects on mouse primary neural progenitors, but overexpression of IGFBP2 had no effect on GBM cells. ^ Although IGFBP2 does not initiate gliomagenesis, using tissue array technology, we observed strong correlation between IGFBP2 overexpression and VEGF up-regulation in human diffuse gliomas. Furthermore, overexpression of IGFBP2 in GBM cells not only enhanced VEGF expression but also increased the malignant potential of U87 MG cells in our angiogenesis xenograft animal model. ^ In parallel to these studies, using established stable SNB19 GBM cells that overexpress IGFBP2, we found that IGFBP2 significantly increased invasion by induction of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes, providing evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion. ^ Finally, we found that primary filial cells infected with an anti-sense IGFBP2 construct have markedly increased sensitivity to γ irradiation and reduced Akt activation. On the other hand, SNB19(BP2) stable lines have consistently increased levels of Akt and NFkB activation, suggesting that one possible mechanism for anti-apoptosic function of IGFBP2 is through the activation of Akt and NFkB. Beside this, what is especially interesting is the finding that Akt protein was cleaved and inactivated during apoptosis by caspases, and IGFBP2 can prevent Akt cleavage, revealing another possible mechanism through it IGFBP2 exhibit strong antiapoptotic effects. Our data showed that IGFBP2 is a specific substrate for caspase-3, raising the possibility that IGFBP2 may inhibit apoptosis by a suicide mechanism. ^ In summary, using cellular, genomics, and molecular approaches, this thesis documented the potential roles of IGFBP2 in glioma progression. Our findings shed light on an important biological aspect of glioma progression and may provide new insights useful for the design of novel mechanism-based therapies for GBM. ^