965 resultados para in-silico


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins secreted by and anchored on the surfaces of parasites are in intimate contact with host tissues. The transcriptome of infective cercariae of the blood fluke, Schistosoma mansoni, was screened using signal sequence trap to isolate cDNAs encoding predicted proteins with an N-terminal signal peptide. Twenty cDNA fragments were identified, most of which contained predicted signal peptides or transmembrane regions, including a novel putative seven-transmembrane receptor and a membrane-associated mitogen-activated protein kinase. The developmental expression pattern within different life-cycle stages ranged from ubiquitous to a transcript that was highly upregulated in the cercaria. A bioinformatics-based comparison of 100 signal peptides from each of schistosomes, humans, a parasitic nematode and Escherichia coli showed that differences in the sequence composition of signal peptides, notably the residues flanking the predicted cleavage site, might account for the negative bias exhibited in the processing of schistosome signal peptides in mammalian cells. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, little is known about signal transduction mechanisms in schistosomes, which cause the disease of schistosomiasis. The mitogen-activated protein kinase (MAPK) signaling pathways, which are evolutionarily conserved from yeast to Homo sapiens, play key roles in multiple cellular processes. Here, we reconstructed the hypothetical MAPK signaling pathways in Schistosoma japonicum and compared the schistosome pathways with those of model eukaryote species. We identified 60 homologous components in the S. japoncium MAPK signaling pathways. Among these, 27 were predicted to be full-length sequences. Phylogenetic analysis of these proteins confirmed the evolutionary conservation of the MAPK signaling pathways. Remarkably, we identified S. japonicum homologues of GTP-binding protein beta and alpha-I subunits in the yeast mating pathway, which might be involved in the regulation of different life stages and female sexual maturation processes as well in schistosomes. In addition, several pathway member genes, including ERK, JNK, Sja-DSP, MRAS and RAS, were determined through quantitative PCR analysis to be expressed in a stage-specific manner, with ERK, JNK and their inhibitor Sja-DSP markedly upregulated in adult female schistosomes. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Adjuvants enhance or modify an immune response that is made to an antigen. An antagonist of the chemokine CCR4 receptor can display adjuvant-like properties by diminishing the ability of CD4+CD25+ regulatory T cells (Tregs) to down-regulate immune responses. Methodology Here, we have used protein modelling to create a plausible chemokine receptor model with the aim of using virtual screening to identify potential small molecule chemokine antagonists. A combination of homology modelling and molecular docking was used to create a model of the CCR4 receptor in order to investigate potential lead compounds that display antagonistic properties. Three-dimensional structure-based virtual screening of the CCR4 receptor identified 116 small molecules that were calculated to have a high affinity for the receptor; these were tested experimentally for CCR4 antagonism. Fifteen of these small molecules were shown to inhibit specifically CCR4-mediated cell migration, including that of CCR4+ Tregs. Significance Our CCR4 antagonists act as adjuvants augmenting human T cell proliferation in an in vitro immune response model and compound SP50 increases T cell and antibody responses in vivo when combined with vaccine antigens of Mycobacterium tuberculosis and Plasmodium yoelii in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) are a superfamily of membrane integral proteins responsible for a large number of physiological functions. Approximately 50% of marketed drugs are targeted toward a GPCR. Despite showing a high degree of structural homology, there is a large variance in sequence within the GPCR superfamily which has lead to difficulties in identifying and classifying potential new GPCR proteins. Here the various computational techniques that can be used to characterize a novel GPCR protein are discussed, including both alignment-based and alignment-free approaches. In addition, the application of homology modeling to building the three-dimensional structures of GPCRs is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjuvants are substances that enhance immune responses and thus improve the efficacy of vaccination. Few adjuvants are available for use in humans, and the one that is most commonly used (alum) often induces suboptimal immunity for protection against many pathogens. There is thus an obvious need to develop new and improved adjuvants. We have therefore taken an approach to adjuvant discovery that uses in silico modeling and structure-based drug-design. As proof-of-principle we chose to target the interaction of the chemokines CCL22 and CCL17 with their receptor CCR4. CCR4 was posited as an adjuvant target based on its expression on CD4(+)CD25(+) regulatory T cells (Tregs), which negatively regulate immune responses induced by dendritic cells (DC), whereas CCL17 and CCL22 are chemotactic agents produced by DC, which are crucial in promoting contact between DC and CCR4(+) T cells. Molecules identified by virtual screening and molecular docking as CCR4 antagonists were able to block CCL22- and CCL17-mediated recruitment of human Tregs and Th2 cells. Furthermore, CCR4 antagonists enhanced DC-mediated human CD4(+) T cell proliferation in an in vitro immune response model and amplified cellular and humoral immune responses in vivo in experimental models when injected in combination with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis (MVA85A) or recombinant hepatitis B virus surface antigen (rHBsAg) vaccines. The significant adjuvant activity observed provides good evidence supporting our hypothesis that CCR4 is a viable target for rational adjuvant design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunoinformatics is the application of informatics techniques to molecules of the immune system. One of its principal goals is the effective prediction of immunogenicity, be that at the level of epitope, subunit vaccine, or attenuated pathogen. Immunogenicity is the ability of a pathogen or component thereof to induce a specific immune response when first exposed to surveillance by the immune system, whereas antigenicity is the capacity for recognition by the extant machinery of the adaptive immune response in a recall response. In thisbook, we introduce these subjects and explore the current state of play in immunoinformatics and the in silico prediction of immunogenicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding between peptide epitopes and major histocompatibility complex (MHC) proteins is a major event in the cellular immune response. Accurate prediction of the binding between short peptides and class I or class II MHC molecules is an important task in immunoinformatics. SVRMHC which is a novel method to model peptide-MHC binding affinities based on support rector machine regression (SVR) is described in this chapter. SVRMHC is among a small handful of quantitative modeling methods that make predictions about precise binding affinities between a peptide and an MHC molecule. As a kernel-based learning method, SVRMHC has rendered models with demonstrated appealing performance in the practice of modeling peptide-MHC binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional model of human ABCB1 nucleotide-binding domain (NBD) was developed by homology modelling using the high-resolution human TAP1 transporter structure as template. Interactions between NBD and flavonoids were investigated using in silico docking studies. Ring-A of unmodified flavonoid was located within the NBD P-loop with the 5-hydroxyl group involved in hydrogen bonding with Lys1076. Ring-B was stabilised by hydrophobic stacking interactions with Tyr1044. The 3-hydroxyl group and carbonyl oxygen were extensively involved in hydrogen bonding interactions with amino acids within the NBD. Addition of prenyl, benzyl or geranyl moieties to ring-A (position-6) and hydrocarbon substituents (O-n-butyl to O-n-decyl) to ring-B (position-4) resulted in a size-dependent decrease in predicted docking energy which reflected the increased binding affinities reported in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This volume both engages the reader and provides a sound foundation for the use of immunoinformatics techniques in immunology and vaccinology. It addresses databases, HLA supertypes, MCH binding, and other properties of immune systems. The book contains chapters written by leaders in the field and provides a firm background for anyone working in immunoinformatics in one easy-to-use, insightful volume.