1000 resultados para ice cores


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous sea salt and mineral dust aerosol records have been studied on the two EPICA (European Project for Ice Coring in Antarctica) deep ice cores. The joint use of these records from opposite sides of the East Antarctic plateau allows for an estimate of changes in dust transport and emission intensity as well as for the identification of regional differences in the sea salt aerosol source. The mineral dust flux records at both sites show a strong coherency over the last 150 kyr related to dust emission changes in the glacial Patagonian dust source with three times higher dust fluxes in the Atlantic compared to the Indian Ocean sector of the Southern Ocean (SO). Using a simple conceptual transport model this indicates that transport can explain only 40% of the atmospheric dust concentration changes in Antarctica, while factor 5-10 changes occurred. Accordingly, the main cause for the strong glacial dust flux changes in Antarctica must lie in environmental changes in Patagonia. Dust emissions, hence environmental conditions in Patagonia, were very similar during the last two glacials and interglacials, respectively, despite 2-4 °C warmer temperatures recorded in Antarctica during the penultimate interglacial than today. 2-3 times higher sea salt fluxes found in both ice cores in the glacial compared to the Holocene are difficult to reconcile with a largely unchanged transport intensity and the distant open ocean source. The substantial glacial enhancements in sea salt aerosol fluxes can be readily explained assuming sea ice formation as the main sea salt aerosol source with a significantly larger expansion of (summer) sea ice in the Weddell Sea than in the Indian Ocean sector. During the penultimate interglacial, our sea salt records point to a 50% reduction of winter sea ice coverage compared to the Holocene both in the Indian and Atlantic Ocean sector of the SO. However, from 20 to 80 ka before present sea salt fluxes show only very subdued millennial changes despite pronounced temperature fluctuations, likely due to the large distance of the sea ice salt source to our drill sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accumulation and distribution of the 2H content of near-surface layers in the eastern part of the Ronne Ice Shelf were determined from 16 firn cores drilled to about 10 m depth during the Filchner IIIa and IV campaigns in 1990 and 1992, respectively. The cores were dated stratigraphically by seasonal d2H variations in the firn. In addition, 3H and high-resolution chemical profiles were used to assist in dating. Both the accumulation rate and the stable-isotope content decrease with increasing distance from the ice edge: the d2H values range from about -195 per mil at the ice edge to -250 per mil at BAS sites 5 and 6, south of Henry Ice Rise, and the accumulation rates from about 210 to 90 kg/m**2/a. The d2H values of the near-surface firn and the 10 m firn temperatures (Theta) at individual sites are very well correlated: ddelta2H/dTheta=(10.3±0.6)per mil /K; r = 0.97. The d2H profiles of the two ice cores B13 and B15 drilled in 1990 and 1992 to 215 and 320 m depth, respectively, reflect the gradual depletion in 2H in the firn upstream of the drill sites. Comparison with tlie surface data indicates that the ice above 142 m in core B15 and above 137 m in core B13 was deposited on the ice shelf, whereas the deeper ice, down to 152.8 m depth, most probably originated from the margin of the Antarctic ice sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice coring and snow cover observations have been carried out at 3 sites in Nordaustlandet, Svalbard since 1995. The results of stratigraphic analyses, and chemical and d18O analyses from Vestfonna and Austfonna cores are presented here. The results from these sites show that most of the chemical constituents contained in the initial snow cover still remained in the ice cores, although re-distribution of them by melt water percolation had occurred. Anthropogenic increases in trace metals, sulfate and nitrate since about 1950 are detected. This suggests that ice-core chemistry records from Nordaustlandet, Svalbard, can be useful to reconstruct past atmospheric conditions. In addition to chemical records, records, that correlate well with the temperature records in Svalbard, can be used to reconstruct past temperature changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spring, Arctic coastal fast ice is inhabited by high densities of sea ice algae and, among other fauna, juveniles of benthic polychaetes. This paper investigates the hypothesis that growth rates of juveniles of the common sympagic polychaete, Scolelepis squamata (Polychaeta: Spionidae), are significantly faster at sea ice algal bloom concentrations compared to concurrent phytoplankton concentrations. Juvenile S. squamata from fast ice off Barrow, Alaska, were fed with different algal concentrations at 0 and 5 °C, simulating ambient high sea ice algal concentrations, concurrent low phytoplankton concentrations, and an intermediate concentration. Growth rates, calculated using a simple linear regression equation, were significantly higher (up to 115 times) at the highest algal concentration compared to the lowest. At the highest algal concentration, juveniles grew faster at 5 °C compared to those feeding at 0 °C with a Q10 of 2.0. We conclude that highly concentrated sea ice algae can sustain faster growth rates of polychaete juveniles compared to the less dense spring phytoplankton concentrations. The earlier melt of Arctic sea ice predicted with climate change might cause a mismatch between occurrence of polychaete juveniles and food availability in the near future. Our data indicate that this reduction in food availability might counteract any faster growth of a pelagic juvenile stage based on forecasted increased water temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent efforts to link the isotopic composition of snow in Greenland with meteorological and climatic parameters have indicated that relatively local information such as observed annual temperatures from coastal Greenland sites, as well as more synoptic scale features such as the North Atlantic Oscillation (NAO) and the temperature seesaw between Jakobshaven, Greenland, and Oslo, Norway, are significantly correlated with d18O and dD values from the past few hundred years measured in ice cores. In this study we review those efforts and then use a new record of isotope values from the Greenland Ice Sheet Project 2 and Greenland Ice Core Project sites at Summit, Greenland, to compare with meteorological and climatic parameters. This new record consists of six individual annually resolved isotopic records which have been average to produce a Summit stacked isotope record. The stacked record is significantly correlated with local Greenland temperatures over the past century (r=0.471), as well as a number of other records including temperatures and pressures from specific locations as well as temperature and pressure patterns such as the temperature seesaw and the North Atlantic Oscillation. A multiple linear regression of the stacked isotope record with a number of meteorological and climatic parameters in the North Atlantic region reveals that five variables contribute significantly to the variance in the isotope record: winter NAO, solar irradiance (as recorded by sunspot numbers), average Greenland coastal temperature, sea surface temperature in the moisture source region for Summit (30°-20°N), and the annual temperature seesaw between Jakobshaven and Oslo. Combined, these variables yield a correlation coefficient of r=0.71, explaining half of the variance in the stacked isotope record.