988 resultados para hole
Resumo:
We consider an electric charge rotating around a Schwarzschild black hole. We compute, using quantum field theory in curved spacetime at the tree level, the power emitted by the rotating charge minimally coupled to the Maxwell field. We also compute how much of the radiation emitted by the swirling charge is absorbed by the black hole.
Resumo:
Objective: the aim of this study was to evaluate the bone healing in spontaneously hypertensive rats (SHR) and compare the results with normotensive rats, evaluating male and female animals.Methods: A bone drill defect was created in the left femur of 24 SHR (12 males and 12 females) and 24 normotensive rats (12 males and 12 females). The animals were divided into two groups and sacrificed 7 and 21 days after the surgical procedure. After the routine laboratory processing, histological and histometric analysis were carried out and data were submitted to ANOVA and Tukey's test (5%).Results: Males and females from the same group had similar histological characteristics. After seven days, all animals presented irregular bone trabeculae. The periosteal osteoblasts were flattened in SHR, and presented a cuboid shape in normotensive animals. After 21 days, the bone defects of all specimens showed a linear closure in all the superficial extension. In addition, SHR presented flattened osteoblasts surrounding the bone trabeculae, while normotensive ones showed cuboidal cells. Statistical analysis of the histometric data indicated similar means between the male and female groups, except for normotensive rats on day 7. In addition, a larger amount of new bone formation was observed in hypertensive when compared to normotensive rats on day 27, in males as well as females.Conclusion: We conclude that bone healing in SHR was more significant than in normotensive ones, as shown by the histological and histometric evaluation 21 days after surgery.
Resumo:
The magnetic order resulting from the indirect exchange in the metallic phase of a (Ga,Mn)As/GaAs double layer structure is studied via Monte Carlo simulation. The polarization of the hole gas is taken into account, establishing a self-consistency between the magnetic order and the electronic structure. The Curie-Weiss temperatures calculated for these low-dimensional systems are in the range of 50-80 K, and the dependence of the transition temperature with the GaAs separation layer is established. (C) 2003 Published by Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that static sources coupled to a massless scalar field in Schwarzschild spacetime give rise to emission and absorption of zero-energy particles due to the presence of Hawking radiation. This is in complete analogy with the description of the bremsstrahlung by a uniformly accelerated charge from the coaccelerated observers' point of view. The response rate of the source is found to coincide with that in Minkowski spacetime as a function of its proper acceleration. It is interesting that this quantum result appears to reflect the classical equivalence principle.
Resumo:
We show that the response rate of (i) a static source interacting with Hawking radiation of a massless scalar field in Schwarzschild spacetime (with the Unruh vacuum) and that of (ii) a uniformly accelerated source with the same proper acceleration in Minkowski spacetime (with the Minkowski vacuum) are equal. We show that this equality will not hold if the Unruh vacuum is replaced by the Hartle-Hawking vacuum. It is verified that the source responds to the Hawking radiation near the horizon as if it were at rest in a thermal bath in Minkowski spacetime with the same temperature. It is also verified that the response rate in the Hartle-Hawking vacuum approaches that in Minkowski spacetime with the same temperature far away from the black hole. Finally, we compare our results with others in the literature.
Resumo:
We quantize the low-energy sector of a massless scalar field in Reissner-Nordström spacetime. This allows the analysis of processes involving soft scalar particles occurring outside charged black holes. In particular, we compute the response of a static scalar source interacting with Hawking radiation using the Unruh (and the Hartle-Hawking) vacuum. This response is compared with the one obtained when the source is uniformly accelerated in the usual vacuum of Minkowski spacetime with the same proper acceleration. We show that both responses are in general different in opposition to the result obtained when the Reissner-Nordström black hole is replaced by a Schwarzschild one. The conceptual relevance of this result is commented on. ©2000 The American Physical Society.
Resumo:
A large portion of Brazil is covered with tropical soils but literature about dynamic parameters of these soils is very limited. SCPT and cross-hole tests were carried out at an experimental research site inland in the state of São Paulo, Brazil. Shear wave velocities (VS) determined based on both tests are presented and compared. A good agreement was observed between both test results and the differences can be associated with soil variability, which was very sensitive to CPT tests. It was also observed that Go/q c ratio determined based on SCPT appears to be an interesting technique to help identify tropical soils. Copyright ASCE 2006.
Resumo:
This paper presents a system for performing down-hole seismic test together with the piezocone test in order to determine the shear wave velocity (Vs) and for calculating the maximum shear modulus (Go); a basic parameter for analyzing the dynamic soil behavior and a reference value of the soil stiffness. The system components are described and tests results for checking the geophone response are also presented, both before and after installation into the probe. The system was used in down-hole tests carried out at three experimental research sites located in the interior of Sao Paulo State, Brazil, where in situ seismic test results are available. The Vs values measured in down-hole tests carried out with this system were consistent with those determined in cross-hole tests and with a commercial seismic piezocone, which enabled to validate the developed system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We consider an electric charge rotating around a Schwarzschild black hole. We compute, using quantum field theory in curved spacetime at the tree level, the power emitted by the rotating charge minimally coupled to the Maxwell field. We also compute how much of the radiation emitted by the swirling charge is absorbed by the black hole.
Resumo:
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a 'blind injection challenge' similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs' angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M circle dot + 10M circle dot (50M circle dot + 50M circle dot) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to similar to 15% for 50M circle dot + 50M circle dot BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)