969 resultados para growth kinetics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A corrosão causada por H2S biogênico frequentemente resulta em danos extensos na indústria do petróleo. O presente trabalho avaliou parâmetros de crescimento microbiano e aplicou metodologias de determinação de sulfetos por técnicas espectrofotométrica na região da luz visível e radiorespirométrica para avaliação da atividade metabólica, correlacionando com a população de bactérias redutoras de sulfato, determinada através da técnica do Número Mais Provável (NMP). Amostras de água de formação e consórcio de BRS foram avaliadas através do arraste de sulfetos estáveis produzidos biogenicamente e quantificados por espectrofotometria. O cálculo das velocidades instantâneas e específicas de produção de sulfetos permitiu avaliar de que maneira alguns parâmetros de crescimento microbiano podem afetar o metabolismo das BRS. A detecção de concentrações traço de sulfetos biogênicos pode ser realizada através de ensaios radiorespirométricos. Para isto, diluições em série de água do mar sintética com três amostras distintas foram avaliadas. Os testes realizados indicam que o acréscimo do tempo de incubação de cultura microbiana anaeróbia mista contribuiu para o aumento das capacidades de redução de sulfato, assim como o aumento das fontes de carbono. Ambas as técnicas provaram ser um rápido teste para a detecção de sulfetos biogênicos, particularmente aqueles associados aos produtos de corrosão, sendo uma ferramenta muito útil para monitoração e controle de tanques de armazenamento de água e óleo, plataformas continentais de petróleo e diversos tipos de reservatórios. O presente trabalho prevê a continuidade dos experimentos, através de avaliação de um maior universo de amostras da indústria do petróleo e medições menos espaçadas da técnica espectrofotométrica, além da avaliação radiorespirométrica em modo contínuo, evitando os efeitos inibitórios do H2S

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid nanostructured materials can exhibit different properties than their constituent components, and can enable decoupled engineering of energy conversion and transport functions. Novel means of building hybrid assemblies of crystalline C 60 and carbon nanotubes (CNTs) are presented, wherein aligned CNT films direct the crystallization and orientation of C 60 rods from solution. In these hybrid films, the C 60 rods are oriented parallel to the direction of the CNTs throughout the thickness of the film. High-resolution imaging shows that the crystals incorporate CNTs during growth, yet grazing-incidence X-ray diffraction (GIXD) shows that the crystal structure of the C 60 rods is not perturbed by the CNTs. Growth kinetics of the C 60 rods are enhanced 8-fold on CNTs compared to bare Si, emphasizing the importance of the aligned, porous morphology of the CNT films as well as the selective surface interactions between C 60 and CNTs. Finally, it is shown how hybrid C 60-CNT films can be integrated electrically and employed as UV detectors with a high photoconductive gain and a responsivity of 10 5 A W -1 at low biases (± 0.5 V). The finding that CNTs can induce rapid, directional crystallization of molecules from solution may have broader implications to the science and applications of crystal growth, such as for inorganic nanocrystals, proteins, and synthetic polymers. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taper-free and vertically oriented Ge nanowires were grown on Si (111) substrates by chemical vapor deposition with Au nanoparticle catalysts. To achieve vertical nanowire growth on the highly lattice mismatched Si substrate, a thin Ge buffer layer was first deposited, and to achieve taper-free nanowire growth, a two-temperature process was employed. The two-temperature process consisted of a brief initial base growth step at high temperature followed by prolonged growth at lower temperature. Taper-free and defect-free Ge nanowires grew successfully even at 270 °C, which is 90 °C lower than the bulk eutectic temperature. The yield of vertical and taper-free nanowires is over 90%, comparable to that of vertical but tapered nanowires grown by the conventional one-temperature process. This method is of practical importance and can be reliably used to develop novel nanowire-based devices on relatively cheap Si substrates. Additionally, we observed that the activation energy of Ge nanowire growth by the two-temperature process is dependent on Au nanoparticle size. The low activation energy (∼5 kcal/mol) for 30 and 50 nm diameter Au nanoparticles suggests that the decomposition of gaseous species on the catalytic Au surface is a rate-limiting step. A higher activation energy (∼14 kcal/mol) was determined for 100 nm diameter Au nanoparticles which suggests that larger Au nanoparticles are partially solidified and that growth kinetics become the rate-limiting step. © 2011 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many unicellular green algae can become yellow or red in various natural habitats due to mass accumulation of a secondary carotenoid, such as lutein, or astaxanthin. The accumulation of secondary carotenoids is generally thought to be a survival strategy of the algae under photo-oxidative stress or other adverse environmental conditions. The physiological role of the carotenoids in stress response is less well understood at the subcellular or molecular level. In this study, a stable astaxanthin overproduction mutant (MT 2877) was isolated by chemical mutagenesis of a wild type (WT) of the green microalga Haematococcus pluvialis Flotow NIES-144. MT 2877 was identical to the WT with respect to morphology, pigment composition, and growth kinetics during the early vegetative stage of the life cycle. However, it had the ability to synthesize and accumulate about twice the astaxanthin content of the WT under high light, or under high light in the presence of excess amounts of ferrous sulphate and sodium acetate. Under stress, the mutant exhibited higher photosynthetic activities than the WT, based on considerably higher chlorophyll fluorescence induction, chlorophyll autofluorescence intensities, and oxygen evolution rates. Cell mortality caused by stress was reduced by half in the mutant culture compared with the WT. Enhanced protection of the mutant against stress is attributed to its accelerated carotenogenesis and accumulation of astaxanthin. Our results suggest that MT 2877, or other astaxanthin overproduction Haematococcus mutants, may offer dual benefits, as compared with the wild type, by increasing cellular astaxanthin content while reducing cell mortality during stress-induced carotenogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doping difficulty in semiconductor nanocrystals has been observed and its origin is currently under debate. It is not clear whether this phenomenon is energetic or depends on the growth kinetics. Using first-principles method, we show that the transition energies and defect formation energies of the donor and acceptor defects always increase as the quantum dot sizes decrease. However, for isovalent impurities, the changes of the defect formation energies are rather small. The origin of the calculated trends is explained using simple band-energy-level models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study on the nucleation and initial growth kinetics of InN on GaN, especially their dependence on metalorganic chemical vapour deposition conditions. It is found that the density and size of separated InN nano-scale islands can be adjusted and well controlled by changing the V/III ratio and growth temperature. InN nuclei density increases for several orders of magnitude with decreasing growth temperature between 525 and 375 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters less than 100 nm, whereas at elevated temperatures the InN islands grow larger and become well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. The temperature dependence of InN island density gives two activation energies of InN nucleation behaviour, which is attributed to two different kinetic processes related to In adatom surface diffusion and desorption, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation process of InAs quantum dots (QDs) on vicinal GaAs (1 0 0) substrates is studied by atomic force microscopy (AFM). It is found that after 1.2 MLs of InAs deposition, while the QDs with diameters less than the width of the multi-atomic steps are shrinking, the larger QDs are growing. Photoluminescence measurements of the uncapped QDs correspond well to the AFM structure observations of the QDs. We propose that the QDs undergo an anomalous coarsening process with modified growth kinetics resulting from the restrictions of the finite terrace sizes. A comparison between the QDs on the vicinal GaAs (1 0 0) substrates and the QDs on the exact GaAs (1 0 0) further verifies the effect of the multi-atomic steps on the formation of QDs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a structure of (In, Ga)As/GaAs quantum dots which are vertically correlated and laterally aligned in a hexagonal way thus forming three-dimensionally ordered arrays. The growth pathway is based on a mechanism of self-assembly by strain-mediated multilayer vertical stacking on a planar GaAs(100) substrate, rather than molecular-beam epitaxy on a prepatterned substrate. The strain energy of lateral island-island interaction is minimum for the arrangement of hexagonal ordering. However, realization of hexagonal ordering not only depends on a complicated trade-off between lateral and vertical island-island interaction but is also related to a delicate and narrow growth kinetics window.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InAs/In0.52Al0.48As nanowire multilayer arrays were grown on (001) InP substrate by molecular-beam epitaxy. The structural property of the arrays was investigated by transmission electron microscopy. The results clearly showed the formation of InAs nanowires, evolution of InAs/InAlAs interface, and composition and thickness modulations in the InAlAs spacer layer. A fixed spatial ordering of InAs/InAlAs nanowires was revealed for all the samples. Regardless of the change in InAlAs spacer thickness of different samples, (i) the nanowires of one InAs layer are positioned above the nanowire spacing in the previous InAs layer and (ii) the layer-ordering orientation angle of nanowires is fixed. The results were explained from the viewpoint of the growth kinetics. The effect of InAlAs spacers is suggested to play an important role on the spatial ordering of the nanowire arrays. (C) 2002 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetics of MOCVD GaInAsSb and AlGaAsSb was studied by the growth rate as a function of growth temperature and partial pressure of III and V MO species. The diffusion theory was used to explain the mass transport processes in MOCVD III-V quaternary antimonides. On the basis of the discussion about their growth kinetics and epilayer properties, the good quality multi-epilayers of these two quaternary antimonides and their photodetectors and arrays with wavelength of 1.8 similar to 2.3 mu m and detectivities of D* > 10(9) cm Hz(1/2) W-1 were obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A kinetic model is developed with the goal of understanding and predicting the morphology evolution of nonocrystals in nonequilibrium growth conditions. The model is based on the assumption that under such conditions, different crystal planes have different kinetic parameters. This model focuses on the morphology-developing stage and is successfully related to the nucleation process and other crystal evolution mechanisms. It is believed to be a universal model and is applied to discuss the morphology evolution of CdSe nanocrystals, including the aspect ratio, injection I schemes, ligands effect and morphology distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Indium (In)-doping was applied in GaN layers during growth of AlGaN/GaN heterostructure with unintentionally doped or modulation Si-doped AlGaN layers. It was found that In-doping was effective in improving electron sheet density of two-dimensional-electron-gas (2DEG) in the heterostructures. Furthermore, In-doping also improved mobility in heterostructures with Si modulation-doped in AlGaN layers. The possible reasons were discussed. X-ray diffraction (XRD) and wet chemical etching revealed that crystalline quality of GaN was improved by In-doping. It was proposed that In-doping modified growth kinetics of GaN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyelectrolyte-protected gold nanoparticles have been facilely obtained by heating an amine-containing polyelectrolyte/HAuCl4 aqueous solution without the additional step of introducing other reducing agents. All experimental data indicate that different initial molar ratio of polyelectrolyte to gold can lead to the formation of dispersed nanoparticles, quasi one-dimensional aggregates of nanoparticles or bulk metal deposits. More importantly, the growth kinetics of gold particles thus formed can be tuned by changing the initial molar ratio of polyelectrolyte to gold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It was demonstrated feasible that underpotential deposition(UPD) of copper on a monolayer-modified gold substrate can be used to determine the gold electrode area. The deposition and stripping of a Cu adlayer can take Place reversibly and stably at a bared or a self-assembled monolayer modified gold electrode. The growth kinetics of decanethiol/Au was also investigated via Cu UPD. The difference between the assembling kinetics determined by UPD and that by quartz crystal microbalance measurements reveals the configuration transmutation of the assembled molecules from a disordered arrangement to an ordered arrangement during the self-assembling processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dendrimer-protected gold nanoparticles have been facilely obtained by heating an aqueous solution containing third generation poly(propyleneimine) dendrimers and HAuCl4 without the additional step of introducing other reducing agents. Transmission electron microscopy (TEM) and UV vis data indicate the size the nucleation and growth kinetics of gold nanoparticles thus formed which can be tuned by changing the initial molar ratio of dendrimer to gold.