169 resultados para enzymology
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The complete amino acid sequence of myotoxin II (godMT-II), a myotoxic phospholipase A( 2 )(PLA(2)) homologue from the venom of the Central American crotaline snake Cerrophidion (Bothrops) godmani, was determined by direct protein sequencing methods. GodMT-II is a class II PLA, showing a Lys instead of Asp at position 49. An additional substitution in the calcium binding loop region (Asn instead of Tyr at position 28) suggests the lack of enzymatic activity observed in this toxin is due to loss of its ability to bind the co-factor Ca2+, since the residues involved in forming the catalytic network of PLA(2)s (His-48, Tyr-52 and Asp-99) an conserved in godMT-II. This myotoxin shows highest sequence homology with other Lys-49 PLA(2)s from Bothrops, Agkistrodon and Trimeresurus species, suggesting that they constitute a conserved family of proteins, yet in contrast presents lower homology with Bothrops asper myotoxin III, a catalytically-active PLA(2). The C-terminal region of godMT-II, which is rich in cationic and hydrophobic residues, shares high sequence homology to the corresponding region in the myotoxin II from B. asper, which has been proposed to play an important role in the Ca2+-independent membrane damaging activity. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
1. 1. Solubilized and membrane-bound alkaline phosphatase showed Michaelis-Menten behavior in a wide range of different substrate concentrations. 2. 2. Membrane-bound alkaline phosphatase has a molecular weight of 130,000 and its minimum active configuration comprises two identical subunits of about 65,000. 3. 3. The two forms of the enzyme behave similarly with respect to NaCl, urea and guanidine HCl. 4. 4. Catalytic groups have pK values of about 8.5 and 9.7 for both membrane-bound and solubilized enzyme. © 1987.
Resumo:
Changes in activities of Cu-Zn superoxide dismutase (SOD- E.C.1.15.1.1.) and lactate dehydrogenase (LDH- E.C.1.1.1.27.) and levels of copper, total protein, triglycerides, phospholipids and total lipids were investigated in pancreas of rats after intratracheal administration of NiCl2 (8.4 mumol/kg). Nickel chloride induced increased SOD activity in pancreas and erythrocytes. This elevation was related to increased copper and decreased phospholipid content in pancreas of these animals. In conclusion, the ability of an animal to tolerate nickel chloride induced damage was governed by a delicate balance between the generation of cytotoxic agents and the various pancreas defense capabilities.
Resumo:
The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.
Resumo:
These data suggest that an improved understanding of the relationship between high dietary carbohydrate and the rate of lipid peroxidation may give some insight into possible treatment modalities for pancreatic damages and may shed light on molecular mechanisms underlying certain pathological processes. High dietary carbohydrate lesions are age related and induced alterations on ceruloplasmin, phospholipids, total proteins, copper and zinc serum levels. Significantly increased serum and pancreatic amylase, and lipoperoxide determinations were observed in 20 month old rats. Cu-Zn superoxide dismutase was decreased in these animals. Daily injection of Cu-Zn superoxide dismutase conjugated with polyethylene glycol (SOD-PEG) prevented the serum and pancreatic changes, indicating that superoxide radical is an important intermediate to high dietary carbohydrate lesion.
Resumo:
Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.
Resumo:
Tunicamycin, which inhibits N-glycosylation of proteins, was used as a tool to determine the type of linkage which occurs in glycoprotein antigens of Aspergillus fumigatus. When A. fumigatus extracts were electrophoretically separated and blotted then probed with anti-Aspergillus patients' sera, differences in antigenic profiles were noted when tunicamycin-treated samples were compared with controls. Tunicamycin had no detectable effect on the cellular proteinases of A. fumigatus, most of which are glycosylated. Some enzymatic components were lacking when extracellular proteinases were compared with those of control samples. The major catalase component of A. fumigatus is a concanavalin A (Con A)-binding glycoprotein. In cultures grown in the presence of tunicamycin, partiallydeglycosylated catalase components were obtained which could be distinguished from the native catalase by their altered mobilities in polyacrylamide gels. The effect of deglycosylation on catalase antigens was monitored using an antiserum raised to a ConA-binding fraction of A fumigatus mycelium. These antibodies bound both to the native glycoprotein and the partially deglycosylated material. These latter two were largely unaffected when incubated with an antiserum raised to a non-ConA-binding fraction of A. fumigatus which is essentially carbohydrate free. The ability to produce partially-glycosylated antigens of A. fumigatus offers a model to study the effect of basic structural modifications on both the enzymatic and antigenic activities of these molecules.
Resumo:
This review aims to report the major control mechanisms of protein and peptides digestion of special interest in human patients. Regarding protein assimilation its digestive process begins at the stomach with some not so indispensable actions comparatively to those of duodenal/jejunal lumen. However even the intestine processes are partially under gastric secretion control. Proteolytic enzyme activities are related to protein structure and amino acid constituents, tertiary and quartenary structures need HCl - denaturation prior to enzymatic hydrolysis. Thereafter the exopeptidases are guided by either NH 2 (aminopeptidases) or COOH (carboxypeptidases) terminals of the molecule while endopeptidases are oriented by the specific amino acids constituents of the peptide. Both dietary and luminal secreted proteins and polypeptides undergo to either limited or complete proteolysis resulting basic or neutral free-amino acids (40%) or dioctapeptides. The brush border peptidases continue to degrade oligopeptide to di-tripeptides and neutral free-amino acids. Some peptides are uptaked by the enterocytes whose cytosolic peptidases complete the hydrolysis. Hence the digestive products flowing in the portal vein are mainly free-amino acids from either luminal or cytosolic hydrolysis and some di-tripeptides intactly absorbed. Both mechanical and chemical processes of digestion are under neural (vagal), neuroendocrinal(acetilcholine),endocrinal(gastrin, secretin and cholecystokinin) or paracrinal (histamine) controls. The gastric phase (hydrochloric acid and pepsinogen secretions) is activated by gastrin, histamine and acetilcholine which respond to both dietary-amino acids (tryptophan and phenylalanine) and mechanic distention of stomach. The pancreatic secretion is stimulated by either cephalic or gastric phases and has influence on the intestinal phase of digestion. The intestinal types of cells S and I release secretin and cholecystokinin respectively in response of acid quimo (cells S) or amino acids and peptides (cells I) in the lumen. Secretin stimulates the releasing of water, bicarbonate and enteropeptidases whereas cholecystokinin acts on pancreatic enzymes.
Resumo:
The chickpea seed germination was carried out in 6 days. During the period it was observed a little variation on total nitrogen contents, however the non protein nitrogen was double. A decrease of 19.1 and 20.6% in relation to total nitrogen was observed to the total globulin and albumin fractions, respectively. The gel filtration chromatography on Sepharose CL-6B and SDS-PAGE demonstrated alterations on the distribution patterns of the albumin and total globulin fractions between the initial and the sixth day of germination suggesting the occurrence of protein degradation in the germination process.The assay for acid protease only appeared in the albumin fraction with casein and chickpea total globulin as substrates, whereas the former was more degradated than the latter, however the transformations detected in the protein fractions apppear indicated that others enzymes could be acting during the process. The trypsin inhibitor activity had a little drop after six day of germination indicating a possible increase on the digestibility of the proteins.
Resumo:
We reexamined the morphological and functional properties of the hyoid, the tongue pad, and hyolingual musculature in chameleons. Dissections and histological sections indicated the presence of five distinctly individualized pairs of intrinsic tongue muscles. An analysis of the histochemical properties of the system revealed only two fiber types in the hyolingual muscles: fast glycolytic and fast oxidative glycolytic fibers. In accordance with this observation, motor-endplate staining showed that all endplates are of the en-plaque type. All muscles show relatively short fibers and large numbers of motor endplates, indicating a large potential for fine muscular control. The connective tissue sheet surrounding the entoglossal process contains elastin fibers at its periphery, allowing for elastic recoil of the hyolingual system after prey capture. The connective tissue sheets surrounding the m. accelerator and m. hyoglossus were examined under polarized light. The collagen fibers in the accelerator epimysium are configured in a crossed helical array that will facilitate limited muscle elongation. The microstructure of the tongue pad as revealed by SEM showed decreased adhesive properties, indicating a change in the prey prehension mechanics in chameleons compared to agamid or iguanid lizards. These findings provide the basis for further experimental analysis of the hyolingual system. © 2001 Wiley-Liss, Inc.
Resumo:
Xylanase, β-glucosidase, β-xylosidase, endoglucanase and polygalacturonase production from Curvularia inaequalis was carried out by means of solid-state and submerged fermentation using different carbon sources. β-Glucosidase, β-xylosidase, polygalacturonase and xylanase produced by the microorganisms were characterized. β-Glucosidase presented optimum activity at pH 5.5 whereas xylanase, polygalacturonase and β-xylosidase activities were optimal at pH 5.0. Maximal activity of β-glucosidase was determined at 60°C, β-xylosidase at 70°C, and polygalacturonase and xylanase at 55°C. These enzymes were stable at acidic to neutral pH and at 40-45°C. The crude enzyme solution was studied for the hydrolysis of agricultural residues.
Resumo:
The effects of maternal exposure to aromatase inhibitor during the perinatal period of sexual brain differentiation were studied. The fertility was assessed in adult, male rat offspring of aromatase inhibitor-treated dams. The following results were obtained: (1) Sexual maturation, body weight, and wet weights of testis, pituitary, seminal vesicle, ventral prostate, and levatori ani muscle were unchanged at adult life. (2) Fifty percent of the animals were able to mate with normal females, which became pregnant but exhibited an increased number of preimplantation loss. (3) There was a decrease in the number of spermatozoa found in the testes and in the daily sperm production. (4) Of those, 25% of the male rats treated with aromatase inhibitor did not present male sexual behavior, showing female behavior when pretreated with estrogen. These results indicate that perinatal exposure to aromatase inhibitor during the critical period of male brain sexual differentiation has a long-term effect on the reproductive physiology and behavior of male rats.