890 resultados para endocrine
Resumo:
Aberrant alterations in glucose and lipid concentrations and their pathways of metabolism are a hallmark of diabetes. However, much less is known about alterations in concentrations of amino acids and their pathways of metabolism in diabetes. In this review we have attempted to highlight, integrate and discuss common alterations in amino acid metabolism in a wide variety of cells and tissues and relate these changes to alterations in endocrine, physiologic and immune function in diabetes.
Resumo:
Background. Mesenchymal stem cells (MSCs) from human umbilical cord vein have great potential for use in cell therapy because of their ease of isolation, expansion, and differentiation, in addition to their relative acceptance from the ethical point of view. Obtaining the umbilical cord at birth does not present any risk to either mother or child. Objective. To isolate and promote in vitro expansion and differentiation of MSCs from human umbilical cord vein into cells with a pancreatic endocrine phenotype. Methods. Mesenchymal stem cells obtained from human umbilical cord vein via collagenase digestion were characterized at cytochemistry and fluorescent-activated cell sorting, and expanded in vitro. Differentiation of MSCs into an endocrine phenotype was induced using high-glucose (23 mmol/L) medium containing nicotinamide, exendin-4, and 2-mercaptoethanol. Expression of insulin, somatostatin, glucagon, and pancreatic and duodenal homeobox 1 was analyzed using immunofluorescence. Results. Cells isolated from the umbilical cord vein were MSCs as confirmed at cytochemistry and fluorescent-activated cell sorting. Expression of somatostatin, glucagon, and pancreatic and duodenal homeobox 1 by differentiated cells was demonstrated using immunofluorescence. Insulin was not expressed. Conclusions. The MSC differentiation protocol used in the present study induced expression of some endocrine markers. Insulin was not produced by these cells, probably because of incomplete induction of differentiation.
Resumo:
Background. Mesenchymal stem cells (MSCs) are an attractive source for generation of cells with beta-cell properties. Previous studies have demonstrated the ability of prolactin to induce an increase in beta-cell mass and maturation, which suggests beneficial effects of its use in MSC differentiation protocols. Objective. To evaluate the expression of endocrine differentiation markers in rat MSCs treated in vitro with prolactin. Methods. Mesenchymal stem cells from bone marrow of Wistar rats were isolated, expanded, and characterized. Differentiation of MSCs was induced in medium containing 23 mmol/L of glucose, and nicotinamide, 2-mercaptoethanol, and exendin-4, in the presence or absence of 500 ng/mL of rat recombinant prolactin. Expression of endocrine markers and prolactin receptor genes was evaluated using real-time polymerase chain reaction, and compared between culture stages and presence vs absence of prolactin in the culture medium. Expression of insulin, somatostatin, glucagon, and pancreatic and duodenal homeobox 1 was also evaluated at immunofluorescence microscopy. Results. Isolated cells were mostly MSCs, as confirmed at fluorescent-activated cell sorting and cytochemistry. Pax6, Ngn-3, Isl1, NeuroD1, Nkx2.2, and Nkx6.1 exhibited varied expression during culture stages. The long form of the prolactin receptor messenger RNA was induced in prolactin-treated cultures (P < .05). The somatostatin gene was induced in early stages of differentiation (P < .05), and its expression was induced by prolactin, as confirmed using immunofluorescence. Conclusion. Culture of rat bone marrow MSCs in differentiation medium induces expression of pancreatic endocrine-specific genes, and somatostatin and prolactin receptor expression was also induced by prolactin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fruit bat Artibeus lituratus absorbs large amounts of glucose in short periods of time and maintains normoglycemia even after a prolonged starvation period. Based on these data, we aimed to investigate various aspects related with glucose homeostasis analyzing: blood glucose and insulin levels, intraperitoneal glucose and insulin tolerance tests (ipGTT and ipITT), glucose-stimulated insulin secretion (2.8, 5.6 or 8.3 mmol/L glucose) in pancreas fragments, cellular distribution of beta cells, and the amount of pAkt/Akt in the pectoral muscle and liver. Blood glucose levels were higher in fed bats (6.88 +/- 0.5 mmol/L) than fasted bats (4.0 +/- 0.8 mmol/L), whereas insulin levels were similar in both conditions. The values of the area-under-the curve obtained from ipGTT were significantly higher when bats received 2 (5.5-fold) or 3 g/kg glucose (7.5-fold) b.w compared to control (saline). These bats also exhibited a significant decrease of blood glucose values after insulin administration during the iplTT. Insulin secretion from fragments of pancreas under physiological concentrations of glucose (5.6 or 8.3 mmol/L) was similar but higher than in 2.8 mmol/L glucose 1.8- and 2.0-fold, respectively. These bats showed a marked beta-cell distribution along the pancreas, and the pancreatic beta cells are not exclusively located at the central part of the islet. The insulin-induced Akt phosphorylation was more pronounced in the pectoral muscle, compared to liver. The high sensitivity to glucose and insulin, the proper insulin response to glucose, and the presence of an apparent large beta-cell population could represent benefits for the management of high influx of glucose from a carbohydrate-rich meal, which permits appropriate glucose utilization. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objectives: We have analyzed the peripheral insulin and glucose sensitivity in vivo, and islet function ex vivo in rats with different degrees of insulin resistance induced by dexamethasone (DEX).Methods: Dexamethasone, in the concentrations of 0.1 (DEX 0.1), 0.5 (DEX 0.5), and 1.0 mg/kg body weight (DEX 1.0) was administered daily, intraperitoneally, to adult Wistar rats for 5 days, whereas controls received saline.Results: Dexamethasone treatment induced peripheral insulin resistance in a dose-dependent manner. At the end of the treatment, only DEX 1.0 rats showed significant increase of postabsorptive blood glucose and serum triglycerides, and nonesterified fatty acids levels. Incubation of pancreatic islets in increasing glucose concentrations (2.8-22 mM) led to an augmented insulin secretion in all DEX-treated rats. Leucine, carbachol, and high KCl concentrations induced the insulin release in DEX 0.5 and DEX 1.0, whereas arginine augmented secretion in all DEX-treated groups.Conclusions: We demonstrate that in DEX 0.5 and, especially in DEX 0.1 groups, but not in DEX 1.0, the adaptations that occurred in the endocrine pancreas are able to counteract metabolic disorders (glucose intolerance and dyslipidemia). These animal models seem to be interesting approaches for the study of degrees of subjacent effects that may mediate type 2 diabetes (DEX 1.0) and islet function alterations, without collateral effects (DEX 0.1 and DEX 0.5).
Resumo:
Halothane depresses cardiorespiratory function and activates the pituitary-adrenal axis, increasing beta endorphin. In horses, beta endorphin may enhance the anaesthetic-associated cardiorespiratory depression and mortality risk. The authors studied endogenous opioid effects on cardiorespiratory function and pituitary-adrenal activity in halothane-anaesthetised ponies by investigating opioid antagonism by naloxone. Six ponies were anaesthetised three times (crossover design). Anaesthesia was induced with thiopentone and maintained with 1.2 per cent halothane for 2 hours. Immediately after induction, naloxone was administered either intra venously (0.5 mg kg(-1) bolus then 0.25 mg kg(-1) hour(-1) for 2 hours) or intrathecally (0.5 mg) or was replaced by saline as control. Pulse and respiratory rates, arterial blood gases, cardiac output and plasma cortisol and adrenocorticotrophic hormone (ACTH) concentrations were measured. All groups developed cardiorespiratory depression (40 per cent decrease in cardiac output) and plasma cortisol increased. Plasma ACTH concentration was higher in ponies treated with intrathecal naloxone. Endogenous opioids may inhibit ACTH Secretion, attenuating the stress response to halothane anaesthesia in equidae. (C) 2001 Harcourt Publishers Ltd.
Resumo:
1. This experiment was carried out to evaluate the productive and physiological consequences of a slight but long term food restriction of male broiler chickens from 2 commercial strains.2. Cobb-500 and Ross chickens were submitted to a 20% food restriction from 8 to 21 d of age. Strain, food programme and their interactive effects were analysed in terms of consequences upon performance, mortality, incidence of sudden death syndrome (SDS) and ascites syndrome (AS), index of right cardiac hypertrophy and plasma concentrations of hormones related to metabolism and growth (T-3, T-4, T-3:T-4 ratio, IGF-I and GH).3. Although some catch-up growth was observed by refeeding previously restricted birds after 22 d of rearing, food restriction decreased (P less than or equal to 0.05) body weight at market age (42 d) irrespective of the strain, but improved (P less than or equal to 0.05) food conversion.4. The incidence of mortality was not high in non-restricted birds but SDS and AS caused more than 50% of deaths. Hypertrophic cardiac index was observed in chickens of both strains after 4 weeks of age and was higher in ad libitum fed birds.5. During the period of food restriction, plasma T-3 and IGF-I concentrations decreased whereas plasma T-4 and GH concentrations increased compared to those of the age-matched ad libitum fed counterparts. During the subsequent ad libitum feeding period, few differences in circulating hormone concentrations were observed, except for the higher mean CH litres in previously food-restricted chickens at 35 d of age.6. These results indicate that even a non-severe food restriction negatively affects body weight of 42-d-old male broilers but these are benefits with improved food efficiency and diminished mortality from metabolic disturbances. The hormone results suggest that the degree of food restriction applied was not severe because there was a very fast adaptive response with small and transient alterations in T-3, T-4 and GH plasma concentrations during the period of compensatory growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Evaluating feeding as unconditioned stimulus for conditioning of an endocrine effect in Nile tilapia
Resumo:
This study tested the adequacy of feeding as an unconditioned stimulus (US) to condition an endocrine response (plasma cortisol increase) in the cichlid fish Nile tilapia (Oreochromis niloticus). In a first study, conditioning was confirmed in grouped fish in the only experiment using single-held Nile tilapia. In this test a conditioned stimulus (CS - aeration off) was associated with a stressor (air emersion for 2 min - US). We then assessed whether several events of paired CS-US resulted in a conditioned endocrine response (CR), in this case an increase in plasma cortisol after presentation of the CS only. Before testing feeding as US, the postprandial or social holding condition for feeding effects on cortisol levels was tested. Nile tilapia showed increased cortisol after feeding associated to social context (grouped fish), but not to food only (single-held fish). In a third study, feeding was tested as US in an experiment similar to the first study but an increase in feeding-induced cortisol could not be conditioned. The absence of CR suggests that the stressor affects acquisition of this response, which may be a consequence of stimulus intensity or biological relevance. This study expands the recently reported Pavlovian conditioning paradigm for endocrine response in fish. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The incidence of ciliated cells in the prostate gland of the female gerbil (Meriones unguiculatus) is uncommon and apparently becomes more frequent during androgen (testosterone cypionate) and anti-estrogen (letrozole) endocrine therapies. To evaluate the effects of such drug therapies on the induction of ciliogenesis in the glandular epithelium of female prostate glands, adult female gerbils aged 90 days were treated for 14 days with testosterone and letrozole after which their prostate glands were removed for histological, ultrastructural, and serological analyses. The cytodifferentiation of the ciliated phenotype in the alveolar epithelium became more frequent after both the testosterone and the letrozole treatments. The ciliogenesis phenomenon of the epithelial cells in the prostate gland of female gerbils thus appears to be induced by variations in the increase of androgen levels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)