956 resultados para early Angiosperm evolution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single lineage of Nicotiana benthamiana is widely used as a model plant1 and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes2,3. These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr14–6. For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species’ natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for ∼0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, we live in an era characterized by the completion and first runs of the LHC accelerator at CERN, which is hoped to provide the first experimental hints of what lies beyond the Standard Model of particle physics. In addition, the last decade has witnessed a new dawn of cosmology, where it has truly emerged as a precision science. Largely due to the WMAP measurements of the cosmic microwave background, we now believe to have quantitative control of much of the history of our universe. These two experimental windows offer us not only an unprecedented view of the smallest and largest structures of the universe, but also a glimpse at the very first moments in its history. At the same time, they require the theorists to focus on the fundamental challenges awaiting at the boundary of high energy particle physics and cosmology. What were the contents and properties of matter in the early universe? How is one to describe its interactions? What kind of implications do the various models of physics beyond the Standard Model have on the subsequent evolution of the universe? In this thesis, we explore the connection between in particular supersymmetric theories and the evolution of the early universe. First, we provide the reader with a general introduction to modern day particle cosmology from two angles: on one hand by reviewing our current knowledge of the history of the early universe, and on the other hand by introducing the basics of supersymmetry and its derivatives. Subsequently, with the help of the developed tools, we direct the attention to the specific questions addressed in the three original articles that form the main scientific contents of the thesis. Each of these papers concerns a distinct cosmological problem, ranging from the generation of the matter-antimatter asymmetry to inflation, and finally to the origin or very early stage of the universe. They nevertheless share a common factor in their use of the machinery of supersymmetric theories to address open questions in the corresponding cosmological models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New stars form in dense interstellar clouds of gas and dust called molecular clouds. The actual sites where the process of star formation takes place are the dense clumps and cores deeply embedded in molecular clouds. The details of the star formation process are complex and not completely understood. Thus, determining the physical and chemical properties of molecular cloud cores is necessary for a better understanding of how stars are formed. Some of the main features of the origin of low-mass stars, like the Sun, are already relatively well-known, though many details of the process are still under debate. The mechanism through which high-mass stars form, on the other hand, is poorly understood. Although it is likely that the formation of high-mass stars shares many properties similar to those of low-mass stars, the very first steps of the evolutionary sequence are unclear. Observational studies of star formation are carried out particularly at infrared, submillimetre, millimetre, and radio wavelengths. Much of our knowledge about the early stages of star formation in our Milky Way galaxy is obtained through molecular spectral line and dust continuum observations. The continuum emission of cold dust is one of the best tracers of the column density of molecular hydrogen, the main constituent of molecular clouds. Consequently, dust continuum observations provide a powerful tool to map large portions across molecular clouds, and to identify the dense star-forming sites within them. Molecular line observations, on the other hand, provide information on the gas kinematics and temperature. Together, these two observational tools provide an efficient way to study the dense interstellar gas and the associated dust that form new stars. The properties of highly obscured young stars can be further examined through radio continuum observations at centimetre wavelengths. For example, radio continuum emission carries useful information on conditions in the protostar+disk interaction region where protostellar jets are launched. In this PhD thesis, we study the physical and chemical properties of dense clumps and cores in both low- and high-mass star-forming regions. The sources are mainly studied in a statistical sense, but also in more detail. In this way, we are able to examine the general characteristics of the early stages of star formation, cloud properties on large scales (such as fragmentation), and some of the initial conditions of the collapse process that leads to the formation of a star. The studies presented in this thesis are mainly based on molecular line and dust continuum observations. These are combined with archival observations at infrared wavelengths in order to study the protostellar content of the cloud cores. In addition, centimetre radio continuum emission from young stellar objects (YSOs; i.e., protostars and pre-main sequence stars) is studied in this thesis to determine their evolutionary stages. The main results of this thesis are as follows: i) filamentary and sheet-like molecular cloud structures, such as infrared dark clouds (IRDCs), are likely to be caused by supersonic turbulence but their fragmentation at the scale of cores could be due to gravo-thermal instability; ii) the core evolution in the Orion B9 star-forming region appears to be dynamic and the role played by slow ambipolar diffusion in the formation and collapse of the cores may not be significant; iii) the study of the R CrA star-forming region suggests that the centimetre radio emission properties of a YSO are likely to change with its evolutionary stage; iv) the IRDC G304.74+01.32 contains candidate high-mass starless cores which may represent the very first steps of high-mass star and star cluster formation; v) SiO outflow signatures are seen in several high-mass star-forming regions which suggest that high-mass stars form in a similar way as their low-mass counterparts, i.e., via disk accretion. The results presented in this thesis provide constraints on the initial conditions and early stages of both low- and high-mass star formation. In particular, this thesis presents several observational results on the early stages of clustered star formation, which is the dominant mode of star formation in our Galaxy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Palu Metamorphic Complex (PMC) is exposed in a late Cenozoic orogenic belt in NW Sulawesi, Indonesia. It is a composite terrane comprising a gneiss unit of Gondwana origin, a schist unit composed of meta-sediments deposited along the SE Sundaland margin in the Late Cretaceous and Early Tertiary, and one or more slivers of amphibolite with oceanic crust characteristics. The gneiss unit forms part of the West Sulawesi block underlying the northern and central sections of the Western Sulawesi Province. The presence of Late Triassic granitoids and recycled Proterozoic zircons in this unit combined with its isotopic signature suggests that the West Sulawesi block has its origin in the New Guinea margin from which it rifted in the late Mesozoic. It docked with Sundaland sometime during the Late Cretaceous. U–Th–Pb dating results for monazite suggest that another continental fragment may have collided with the Sundaland margin in the earliest Miocene. High-pressure (HP) and ultrahigh-pressure (UHP) rocks (granulite, peridotite, eclogite) are found as tectonic slices within the PMC, mostly along the Palu–Koro Fault Zone, a major strike-slip fault that cuts the complex. Mineralogical and textural features suggest that some of these rocks resided at depths of 60–120 km during a part of their histories. Thermochronological data (U–Th–Pb zircon and 40Ar/39Ar) from the metamorphic rocks indicate a latest Miocene to mid-Pliocene metamorphic event, which was accompanied by widespread granitoid magmatism and took place in an extensional tectonic setting. It caused recrystallization of, and new overgrowths on, pre-existing zircon crystals, and produced andalusite–cordierite–sillimanite–staurolite assemblages in pelitic protoliths, indicating HT–LP (Buchan-type) metamorphism. The PMC was exhumed as a core complex at moderate rates (c. 0.7–1.0 mm/yr) accompanied by rapid cooling in the Plio-Pleistocene. Some of the UHP rocks were transported to the surface at significantly higher rates (⩾16 mm/yr). The results of our study do not support recent plate tectonic reconstructions that propose a NW Australia margin origin for the West Sulawesi block (e.g. Hall et al., 2009).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain rate sensitivity measurements are used to identify twinning and changes in deformation mechanisms in a Mg AZ31 alloy over a wide range of temperatures and grain sizes. At low temperatures, there is significant twinning at low strains with strain-rate insensitivity; at large strains, strain rate sensitivity is noted, corresponding to deformation by multiple slip. At high temperatures, there is very little twinning and this leads to a significant strain rate sensitivity from the early stages of deformation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to identify the functionally relevant epitopes on chicken riboflavin carrier protein, we have raised monoclonal antibodies to the vitamin carrier. One of these, 6B2C12, was found to interact specifically with a synthetic oligopeptide corresponding to the C-terminal 17 amino acid residues of the chicken egg white riboflavin carrier protein, which is missing in part in the egg yolk riboflavin carrier protein. This epitope is conserved through evolution in mammals including humans. Administration of the ascites fluid of 6B2C12 to pregnant mice intraperitoneally, resulted in the termination of pregnancy indicating that this epitope is involved in or closely associated with the transplacental transport of the vitamin from the maternal circulation to the growing fetus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to establish the palaeoenvironmental conditions during the late Quaternary in Murchisonfjorden, Nordaustlandet, based on foraminiferal assemblage compositions, and to determine the onset and termination of the Weichselian glaciations. The foraminiferal assemblage compositions were studied in marine sediments from three different archives, from sections next to the present shoreline in the Bay of Isvika, from a core in the Bay of Isvika and from a core from Lake Einstaken. OSL and AMS 14C age determinations were performed on samples from the three archives, and the results show deposition of marine sediments during ice-free periods of the Early Weichselian, the Middle Weichselian and the Late Weichselian, as well as during the Holocene in the investigated area. Marine sediments from the Early and Middle Weichselian were sampled from isostatically uplifted sections along the present shoreline.Sediments from the transition from the Late Weichselian to early Holocene time intervals were found in the bottom of the core from Lake Einstaken. Holocene sediments were investigated in the sections and in the core from the Bay of Isvika. The marine sediments from the sections are comprised of five benthic foraminiferal assemblages. The Early Weichselian is represented by two foraminiferal assemblages, the Middle Weichselian, the early and the late Holocene each by one. All five foraminiferal assemblages were deposited in glacier-distal shallow-water environments, which had a connection to the open ocean. Changes in the composition of the assemblages can be ascribed to differences in the bottom-water currents and changes in the salinity. The Middle Weichselian assemblage is of special importance, because it is the first foraminiferal assemblage to be described from this time interval from Svalbard. Four benthic foraminiferal assemblages were deposited shortly before the marine to lacustrine transition at the boundary between the Late Weichselian and Holocene in Lake Einstaken. The foraminiferal assemblages show a change from a high-arctic, normal marine shallow-water environment to an even shallower environment with highly fluctuating salinity. The analyses of the core from 100 m water depth in the Bay of Isvika resulted in the determination of four foraminiferal assemblages. These indicated changes from a glacier-proximal environment during deglaciation, to a more glacier-distal environment during the Early Holocene. This was followed by a period with a marked change to a considerably cooler environment and finally to a closed fjord environment in the middle and late Holocene times. Additional sedimentological analyses of the marine and glacially derived sediments from the uplifted sections, as well as observations of multiple striae on the bedrock, observations of deeply weathered bedrock and findings of tills interlayered with marine sediments complete the investigations in the study area. They indicate weak glacial erosion in the study area. It can be concluded that marine deposition occurred in the investigated area during three time intervals in the Weichselian and during most of the Holocene. The foraminiferal assemblages in the Holocene are characterized by a transition from glacier-proximal to glacier-distal faunas. The palaeogeographical change from an open fjord to a closed fjord environment is a result of the isostatic uplift of the area after the LGM and is clearly reflected in the foraminiferal assemblages. Another influencing factor on the foraminiferal assemblage composition are changes in the inflow of warmer Atlantic waters to the study area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When freshly eclosed females of the primitively eusocial wasp, Rapalidia marginata are isolated into individual cages, only about half of them build nests and lay eggs and those that do so take a long and variable amount of time (Mean +/- SD = 66 +/- 37 days) before they lay their first egg. Part of the reason for this delay is because, when kept in isolation, no wasp begins to lay eggs during a period of approximately 82 days from mid - October to early January. Wasps maintained at a constant temperature of 26 +/- 1-degrees-C however initiate egg laying throughout the year, suggesting that the low temperatures during mid - October to early January may be at least one factor that makes this period unfavourable for wasps maintained at room temperature. Egg laying continues more or less normally throughout October-January however, in all natural and laboratory colonies studied. Natural colonies of R. marginata are initiated throughout the year and often by groups of females. Huddling together is a striking feature of the wasps especially on cold mornings. We therefore suggest that the isolated animals in our experiment are unable to lay eggs during the coldest part of the year because of their inability to huddle together, share metabolic heat and perform "co-operative thermoregulation". Such "co-operative thermoregulation" may thus be another factor that facilitates the evolution of socialitly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is a pragmatic description of the evolution of the genre of English witchcraft pamphlets from the mid-sixteenth century to the end of the seventeenth century. Witchcraft pamphlets were produced for a new kind of readership semi-literate, uneducated masses and the central hypothesis of this study is that publishing for the masses entailed rethinking the ways of writing and printing texts. Analysis of the use of typographical variation and illustrations indicates how printers and publishers catered to the tastes and expectations of this new audience. Analysis of the language of witchcraft pamphlets shows how pamphlet writers took into account the new readership by transforming formal written source materials trial proceedings into more immediate ways of writing. The material for this study comes from the Corpus of Early Modern English Witchcraft Pamphlets, which has been compiled by the author. The multidisciplinary analysis incorporates both visual and linguistic aspects of the texts, with methodologies and theoretical insights adopted eclectically from historical pragmatics, genre studies, book history, corpus linguistics, systemic functional linguistics and cognitive psychology. The findings are anchored in the socio-historical context of early modern publishing, reading, literacy and witchcraft beliefs. The study shows not only how consideration of a new audience by both authors and printers influenced the development of a genre, but also the value of combining visual and linguistic features in pragmatic analyses of texts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clouds are the largest source of uncertainty in climate science, and remain a weak link in modeling tropical circulation. A major challenge is to establish connections between particulate microphysics and macroscale turbulent dynamics in cumulus clouds. Here we address the issue from the latter standpoint. First we show how to create bench-scale flows that reproduce a variety of cumulus-cloud forms (including two genera and three species), and track complete cloud life cycles-e.g., from a ``cauliflower'' congestus to a dissipating fractus. The flow model used is a transient plume with volumetric diabatic heating scaled dynamically to simulate latent-heat release from phase changes in clouds. Laser-based diagnostics of steady plumes reveal Riehl-Malkus type protected cores. They also show that, unlike the constancy implied by early self-similar plume models, the diabatic heating raises the Taylor entrainment coefficient just above cloud base, depressing it at higher levels. This behavior is consistent with cloud-dilution rates found in recent numerical simulations of steady deep convection, and with aircraft-based observations of homogeneous mixing in clouds. In-cloud diabatic heating thus emerges as the key driver in cloud development, and could well provide a major link between microphysics and cloud- scale dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot deformation behavior of a hypoeutectic Ti-6Al-4V-0.1B alloy in (alpha + beta) phase field is investigated in the present study with special reference to flow response, kinetics and microstructural evolution. For a comparison, the base alloy Ti-6Al-4V was also studied under identical conditions. Dynamic recovery of alpha phase occurs at low temperatures while softening due to globularization and/or dynamic recrystallization dominates at high temperatures irrespective of boron addition. Microstructural features for both the alloys display bending and kinking of alpha lamellae for near alpha test temperatures. Unlike Ti-6Al-4V, no sign of instability formation was observed in Ti-6Al-4V-0.1B for any deformation condition except for cavitation around TiB particles, due to deformation incompatibility and strain accumulation at the particle-matrix interface. The absence of macroscopic instabilities and early initiation of softening mechanisms as a result of boron addition has been attributed to microstructural features (e.g. refined prior beta grain and alpha colony size, absence of grain boundary alpha layer, presence of TiB particles at prior beta boundaries, etc.) of the respective alloys prior to deformation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this study describes the evolution of microstructure and texture in Ti-6Al-4V-0.1B alloy during sub-transus rolling vis-A -vis the control alloy Ti-6Al-4V. In the second part, the static annealing response of the two alloys at self-same conditions is compared and the principal micromechanisms are analyzed. Faster globularization kinetics has been observed in the Ti-6Al-4V-0.1B alloy for equivalent annealing conditions. This is primarily attributed to the alpha colonies, which leads to easy boundary splitting via multiple slip activation in this alloy. The other mechanisms facilitating lamellar to equiaxed morphological transformations, e.g., termination migration and cylinderization, also start early in the boron-modified alloy due to small alpha colony size, small aspect ratio of the alpha lamellae, and the presence of TiB particles in the microstructure. Both the alloys exhibit weakening of basal fiber (ND||aOE (c) 0001 >) and strengthening of prism fiber (RD||aOE (c) aOE(a)) upon annealing. A close proximity between the orientations of fully globularized primary alpha and secondary alpha phases during alpha -> beta -> alpha transformation has accounted for such a texture modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report chromium isotope compositions, expressed as delta Cr-53/ 52 in per mil (&) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth's mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i. e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed delta Cr-53/ 52 in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth's mantle Cr inventory is uniform at - 0.079 +/- 0.129& (2SD), which we named here as a ` canonical' mantle d 53/ 52 Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth's geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about +/- 0.100&, since at least the Early Archean times (similar to 3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i. e., serpentinized harzburgites, lherzolites) that revealed large positive delta Cr-53/ 52 anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On Ignition (LOI) parameter, which determines the amount of structurally bound water (OH/ H2O) present in secondary hydrated minerals like serpentine. Overall, we observed that altered ultramafic rocks that yielded the highest LOI values, and the lowest amounts of fluid mobile elements, also yielded the heaviest delta Cr-53/ 52 signatures. Therefore, we conclude that secondary alteration (i.e., hydration, serpentinization) of ultramafic rocks in near-surface oxidative environments tend to shift the bulk Cr isotope composition of the weathered products to isotopically heavier values, pointing to a dynamic redox cycling of Cr in the Earth's crustal and near-surface environments. Hence, if validated by future

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.