953 resultados para dose-response relationships
Resumo:
INTRODUCTION: Anaemia during chemotherapy is often left untreated. Erythropoiesis-stimulating agents are frequently used to treat overt anaemia. Their prophylactic use, however, remains controversial and raises concerns about cost-effectiveness. Therefore, we assessed the efficacy of a dose-reduction schedule in anaemia prophylaxis. MATERIALS AND METHODS: The study included patients with untreated solid tumours about to receive platinum-based chemotherapy and had haemoglobin (Hb) levels ≥11 g/dL. Epoetin-α was administered at a dose level of 3 × 10,000 U weekly as soon as Hb descended to < 13 g/dL. Dose reductions to 3 × 4,000 U and 3 × 2,000 U weekly were planned in 4-week intervals if Hb stabilised in the range of 11-13 g/dL. Upon ascending to ≥13 g/dL, epoetin was discontinued. Iron supplements of 100 mg intravenous doses were given weekly. Of 37 patients who enrolled, 33 could be evaluated. RESULTS AND DISCUSSION: Their median Hb level was 13.7 (10.9-16.2) g/dL at baseline and descended to 11.0 (7.4-13.8) g/dL by the end of chemotherapy. Anaemia (Hb < 10 g/dL) was prevented in 24 patients (73%). The mean dose requirement for epoetin-α was 3 × 5,866 U per week per patient, representing a dose reduction of 41%. Treatment failed in nine patients (27%), in part due to epoetin-α resistance in four (12%) and blood transfusion in three (9%) patients. CONCLUSION: Dose reduction was as effective as fixed doses in anaemia prophylaxis but reduced the amount of prescribed epoetin substantially.
Resumo:
BACKGROUND: Acute alcohol consumption has been reported to be an important risk factor for injury, but clear scientific evidence on issues such as injury type is not available. The present study aims to improve the knowledge of the importance of alcohol consumption as an injury determinant with regards to two dimensions of the type of injury, namely the nature and the body region involved. METHODS: Risk relationships between two injury type components and acute alcohol use were estimated through multinomial and logistic regression models based on data from 7,529 patients-among whom 3,682 had injury diagnoses-gathered in a Swiss emergency department. RESULTS: Depending on the type of injury, between 31.1% and 48.7% of casualties report alcohol use before emergency department attendance. The multinomial regression models show that even low alcohol levels are consistently associated with nearly all natures of injury and body regions. A persistent dose-response effect between alcohol levels and risk associations was observed for almost all injury types. CONCLUSIONS: The results highlight the importance and consistency of the risk association between low and moderate levels of acute alcohol consumption and all types of injury. None of the body regions and natures of injury could pride on absence of association between alcohol and injury. Public health, prevention, and care implications are considered.
Resumo:
OBJECTIVE: To compare the pharmacokinetic and pharmacodynamic characteristics of angiotensin II receptor antagonists as a therapeutic class. DESIGN: Population pharmacokinetic-pharmacodynamic modelling study. METHODS: The data of 14 phase I studies with 10 different drugs were analysed. A common population pharmacokinetic model (two compartments, mixed zero- and first-order absorption, two metabolite compartments) was applied to the 2685 drug and 900 metabolite concentration measurements. A standard nonlinear mixed effect modelling approach was used to estimate the drug-specific parameters and their variabilities. Similarly, a pharmacodynamic model was applied to the 7360 effect measurements, i.e. the decrease of peak blood pressure response to intravenous angiotensin challenge recorded by finger photoplethysmography. The concentration of drug and metabolite in an effect compartment was assumed to translate into receptor blockade [maximum effect (Emax) model with first-order link]. RESULTS: A general pharmacokinetic-pharmacodynamic (PK-PD) model for angiotensin antagonism in healthy individuals was successfully built up for the 10 drugs studied. Representatives of this class share different pharmacokinetic and pharmacodynamic profiles. Their effects on blood pressure are dose-dependent, but the time course of the effect varies between the drugs. CONCLUSIONS: The characterisation of PK-PD relationships for these drugs gives the opportunity to optimise therapeutic regimens and to suggest dosage adjustments in specific conditions. Such a model can be used to further refine the use of this class of drugs.
Resumo:
BACKGROUND. Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. METHODS. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. RESULTS. Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. CONCLUSIONS. A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.
Resumo:
The shape of the energy spectrum produced by an x-ray tube has a great importance in mammography. Many anode-filtration combinations have been proposed to obtain the most effective spectrum shape for the image quality-dose relationship. On the other hand, third generation synchrotrons such as the European Synchrotron Radiation Facility in Grenoble are able to produce a high flux of monoenergetic radiation. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard conventional units. It was performed systematically in the energy range of interest for mammography through the evaluation of a global image quality index and through the measurement of the mean glandular dose. Compared to conventional mammography units, synchrotron radiation shows a great improvement of the image quality-dose relationship, which is due to the beam monochromaticity and to the high intrinsic collimation of the beam, which allows the use of a slit instead of an anti-scatter grid for scatter rejection.
Resumo:
BACKGROUND: Antiretroviral therapy (ART) containing tenofovir disoproxil fumarate (TDF) and didanosine (ddI) has been associated with poor immune recovery despite virologic success. This effect might be related to ddI toxicity since ddI exposure is substantially increased by TDF. OBJECTIVE: To analyze whether immune recovery during ART with TDF and ddI is ddI-dose dependent. DESIGN AND METHODS: A retrospective longitudinal analysis of immune recovery measured by the CD4 T-cell slope in 614 patients treated with ART containing TDF with or without ddI. Patients were stratified according to the tertiles of their weight-adjusted ddI dose: low dose (< 3.3 mg/kg), intermediate dose (3.3-4.1 mg/kg) and high dose (> 4.1 mg/kg). Cofactors modifying the degree of immune recovery after starting TDF-containing ART were identified by univariable and multivariable linear regression analyses. RESULTS: CD4 T-cell slopes were comparable between patients treated with TDF and a weight-adjusted ddI-dose of < 4.1 mg/kg per day (n = 143) versus TDF-without-ddI (n = 393). In the multivariable model the slopes differed by -13 CD4 T cells/mul per year [95% confidence interval (CI), -42 to 17; P = 0.40]. In contrast, patients treated with TDF and a higher ddI dose (> 4.1 mg/kg per day, n = 78) experienced a significantly impaired immune recovery (-47 CD4 T cells/microl per year; 95% CI, -82 to -12; P = 0.009). The virologic response was comparable between the different treatment groups. CONCLUSIONS: Immune recovery is impaired, when high doses of ddI (> 4.1 mg/kg) are given in combination with TDF. If the dose of ddI is adjusted to less than 4.1 mg/kg per day, immune recovery is similar to other TDF-containing ART regimen.
Resumo:
INTRODUCTION: We report the impact of canakinumab, a fully human anti-interleukin-1β monoclonal antibody, on inflammation and health-related quality of life (HRQoL) in patients with difficult-to-treat Gouty Arthritis. METHODS: In this eight-week, single-blind, double-dummy, dose-ranging study, patients with acute Gouty Arthritis flares who were unresponsive or intolerant to--or had contraindications for--non-steroidal anti-inflammatory drugs and/or colchicine were randomized to receive a single subcutaneous dose of canakinumab (10, 25, 50, 90, or 150 mg) (N = 143) or an intramuscular dose of triamcinolone acetonide 40 mg (N = 57). Patients assessed pain using a Likert scale, physicians assessed clinical signs of joint inflammation, and HRQoL was measured using the 36-item Short-Form Health Survey (SF-36) (acute version). RESULTS: At baseline, 98% of patients were suffering from moderate-to-extreme pain. The percentage of patients with no or mild pain was numerically greater in most canakinumab groups compared with triamcinolone acetonide from 24 to 72 hours post-dose; the difference was statistically significant for canakinumab 150 mg at these time points (P < 0.05). Treatment with canakinumab 150 mg was associated with statistically significant lower Likert scores for tenderness (odds ratio (OR), 3.2; 95% confidence interval (CI), 1.27 to 7.89; P = 0.014) and swelling (OR, 2.7; 95% CI, 1.09 to 6.50, P = 0.032) at 72 hours compared with triamcinolone acetonide. Median C-reactive protein and serum amyloid A levels were normalized by seven days post-dose in most canakinumab groups, but remained elevated in the triamcinolone acetonide group. Improvements in physical health were observed at seven days post-dose in all treatment groups; increases in scores were highest for canakinumab 150 mg. In this group, the mean SF-36 physical component summary score increased by 12.0 points from baseline to 48.3 at seven days post-dose. SF-36 scores for physical functioning and bodily pain for the canakinumab 150 mg group approached those for the US general population by seven days post-dose and reached norm values by eight weeks post-dose. CONCLUSIONS: Canakinumab 150 mg provided significantly greater and more rapid reduction in pain and signs and symptoms of inflammation compared with triamcinolone acetonide 40 mg. Improvements in HRQoL were seen in both treatment groups with a faster onset with canakinumab 150 mg compared with triamcinolone acetonide 40 mg. TRIAL REGISTRATION: clinicaltrials.gov: NCT00798369.
Resumo:
BACKGROUND: The dose intensity of chemotherapy can be increased to the highest possible level by early administration of multiple and sequential high-dose cycles supported by transfusion with peripheral blood progenitor cells (PBPCs). A randomized trial was performed to test the impact of such dose intensification on the long-term survival of patients with small cell lung cancer (SCLC). METHODS: Patients who had limited or extensive SCLC with no more than two metastatic sites were randomly assigned to high-dose (High, n = 69) or standard-dose (Std, n = 71) chemotherapy with ifosfamide, carboplatin, and etoposide (ICE). High-ICE cycles were supported by transfusion with PBPCs that were collected after two cycles of treatment with epidoxorubicin at 150 mg/m(2), paclitaxel at 175 mg/m(2), and filgrastim. The primary outcome was 3-year survival. Comparisons between response rates and toxic effects within subgroups (limited or extensive disease, liver metastases or no liver metastases, Eastern Cooperative Oncology Group performance status of 0 or 1, normal or abnormal lactate dehydrogenase levels) were also performed. RESULTS: Median relative dose intensity in the High-ICE arm was 293% (range = 174%-392%) of that in the Std-ICE arm. The 3-year survival rates were 18% (95% confidence interval [CI] = 10% to 29%) and 19% (95% CI = 11% to 30%) in the High-ICE and Std-ICE arms, respectively. No differences were observed between the High-ICE and Std-ICE arms in overall response (n = 54 [78%, 95% CI = 67% to 87%] and n = 48 [68%, 95% CI = 55% to 78%], respectively) or complete response (n = 27 [39%, 95% CI = 28% to 52%] and n = 24 [34%, 95% CI = 23% to 46%], respectively). Subgroup analyses showed no benefit for any outcome from High-ICE treatment. Hematologic toxicity was substantial in the Std-ICE arm (grade > or = 3 neutropenia, n = 49 [70%]; anemia, n = 17 [25%]; thrombopenia, n = 17 [25%]), and three patients (4%) died from toxicity. High-ICE treatment was predictably associated with severe myelosuppression, and five patients (8%) died from toxicity. CONCLUSIONS: The long-term outcome of SCLC was not improved by raising the dose intensity of ICE chemotherapy by threefold.
Resumo:
Imatinib is the standard of care for patients with advanced metastatic gastrointestinal stromal tumors (GIST), and is also approved for adjuvant treatment in patients at substantial risk of relapse. Studies have shown that maximizing benefit from imatinib depends on long-term administration at recommended doses. Pharmacokinetic (PK) and pharmacodynamic factors, adherence, and drug-drug interactions can affect exposure to imatinib and impact clinical outcomes. This article reviews the relevance of these factors to imatinib's clinical activity and response in the context of what has been demonstrated in chronic myelogenous leukemia (CML), and in light of new data correlating imatinib exposure to response in patients with GIST. Because of the wide inter-patient variability in drug exposure with imatinib in both CML and GIST, blood level testing (BLT) may play a role in investigating instances of suboptimal response, unusually severe toxicities, drug-drug interactions, and suspected non-adherence. Published clinical data in CML and in GIST were considered, including data from a PK substudy of the B2222 trial correlating imatinib blood levels with clinical responses in patients with GIST. Imatinib trough plasma levels <1100ng/mL were associated with lower rates of objective response and faster development of progressive disease in patients with GIST. These findings have been supported by other analyses correlating free imatinib (unbound) levels with response. These results suggest a future application for imatinib BLT in predicting and optimizing therapeutic response. Nevertheless, early estimates of threshold imatinib blood levels must be confirmed prospectively in future studies and elaborated for different patient subgroups.
Resumo:
In order to characterize inverse agonism at alpha1B-adrenoceptors, we have compared the concentration-response relationships of several quinazoline and non-quinazoline alpha1-adrenoceptor antagonists at cloned hamster wild-type (WT) alpha1B-adrenoceptors and a constitutively active mutant (CAM) thereof upon stable expression in Rat-1 fibroblasts. Receptor activation or inhibition thereof was assessed as [3H]inositol phosphate (IP) accumulation. Quinazoline (alfuzosin, doxazosin, prazosin, terazosin) and non-quinazoline alpha1-adrenoceptor antagonists (BE 2254, SB 216,469, tamsulosin) concentration-dependently inhibited phenylephrine-stimulated IP formation at both WT and CAM with Ki values similar to those previously found in radioligand binding studies. At CAM in the absence of phenylephrine, the quinazolines produced concentration-dependent inhibition of basal IP formation; the maximum inhibition was approximately 55%, and the corresponding EC50 values were slightly smaller than the Ki values. In contrast, BE 2254 produced much less inhibition of basal IP formation, SB 216,469 was close to being a neutral antagonist, and tamsulosin even weakly stimulated IP formation. The inhibitory effects of the quinazolines and BE 2254 as well as the stimulatory effect of tamsulosin were equally blocked by SB 216,469 at CAM. At WT in the absence of phenylephrine, tamsulosin did not cause significant stimulation and none of the other compounds caused significant inhibition of basal IP formation. We conclude that alpha1-adrenoceptor antagonsits with a quinazoline structure exhibit greater efficacy as inverse agonists than those without.
Resumo:
Second cancer risk assessment for radiotherapy is controversial due to the large uncertainties of the dose-response relationship. This could be improved by a better assessment of the peripheral doses to healthy organs in future epidemiological studies. In this framework, we developed a simple Monte Carlo (MC) model of the Siemens Primus 6 MV linac for both open and wedged fields that we then validated with dose profiles measured in a water tank up to 30 cm from the central axis. The differences between the measured and calculated doses were comparable to other more complex MC models and never exceeded 50%. We then compared our simple MC model with the peripheral dose profiles of five different linacs with different collimation systems. We found that the peripheral dose between two linacs could differ up to a factor of 9 for small fields (5 × 5 cm(2)) and up to a factor of 10 for wedged fields. Considering that an uncertainty of 50% in dose estimation could be acceptable in the context of risk assessment, the MC model can be used as a generic model for large open fields (≥10 × 10 cm(2)) only. The uncertainties in peripheral doses should be considered in future epidemiological studies when designing the width of the dose bins to stratify the risk as a function of the dose.
Resumo:
OBJECTIVE: To assess the efficacy and tolerability of canakinumab, a fully human anti-interleukin-1β monoclonal antibody, for the treatment of acute gouty arthritis. METHODS: In this 8-week, single-blind, double-dummy, dose-ranging study, patients with acute gouty arthritis whose disease was refractory to or who had contraindications to nonsteroidal antiinflammatory drugs and/or colchicine were randomized to receive a single subcutaneous dose of canakinumab (10, 25, 50, 90, or 150 mg; n = 143) or an intramuscular dose of triamcinolone acetonide (40 mg; n = 57). Patients assessed pain using a 100-mm visual analog scale. RESULTS: Seventy-two hours after treatment, a statistically significant dose response was observed for canakinumab. All canakinumab doses were associated with numerically less pain than triamcinolone acetonide; thus, a dose with equivalent efficacy to triamcinolone acetonide 72 hours after treatment could not be determined. The reduction from baseline in pain intensity with canakinumab 150 mg was greater than with triamcinolone acetonide 24, 48, and 72 hours after treatment (differences of -11.5 mm [P = 0.04], -18.2 mm [P = 0.002], and -19.2 mm [P < 0.001], respectively), and 4, 5, and 7 days after treatment (all P < 0.05). Canakinumab significantly reduced the risk of recurrent flares versus triamcinolone acetonide (P ≤ 0.01 for all doses) (relative risk reduction 94% for canakinumab 150 mg versus triamcinolone acetonide). The overall incidence of adverse events was similar for canakinumab (41%) and triamcinolone acetonide (42%); most were mild or moderate in severity. CONCLUSION: Our findings indicate that canakinumab 150 mg provides rapid and sustained pain relief in patients with acute gouty arthritis, and significantly reduces the risk of recurrent flares compared with triamcinolone acetonide.
Resumo:
BACKGROUND: The aim of this study was to assess the pharmacology, toxicity and activity of high-dose ifosfamide mesna +/- GM-CSF administered by a five-day continuous infusion at a total ifosfamide dose of 12-18 g/m2 in adult patients with advanced sarcomas. PATIENTS AND METHODS: Between January 1991 and October 1992 32 patients with advanced or metastatic sarcoma were entered the study. Twenty-seven patients were pretreated including twenty-three with prior ifosfamide at less than 8 g/m2 total dose/cycle. In 25 patients (27 cycles) extensive pharmacokinetic analyses were performed. RESULTS: The area under the plasma concentration-time curve (AUC) for ifosfamide increased linearly with dose while the AUC's of the metabolites measured in plasma by thin-layer chromatography did not increase with dose, particularly that of the active metabolite isophosphoramide mustard. Furthermore the AUC of the inactive carboxymetabolite did not increase with dose. Interpatient variability of pharmacokinetic parameters was high. Dose-limiting toxicity was myelosuppression at 18 g/m2 total dose with grade 4 neutropenia in five of six patients and grade 4 thrombocytopenia in four of six patients. Therefore the maximum tolerated dose was considered to be 18 g/m2 total dose. There was one CR and eleven PR in twenty-nine evaluable patients (overall response rate 41%). CONCLUSION: Both the activation and inactivation pathways of ifosfamide are non-linear and saturable at high-doses although the pharmacokinetics of the parent drug itself are dose linear. Ifosfamide doses greater than 14-16 g/m2 per cycle appear to result in a relative decrease of the active metabolite isophosphoramide mustard. These data suggest a dose-dependent saturation or even inhibition of ifosfamide metabolism by increasing high dose ifosfamide and suggest the need for further metabolic studies.
Resumo:
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.
Resumo:
OBJECTIVE: We investigated whether the oral administration of a low dose (75 micro g) of midazolam, a CYP3A probe, can be used to measure the in vivo CYP3A activity. METHODS: Plasma concentrations of midazolam, 1'OH-midazolam and 4'OH-midazolam were measured after the oral administration of 7.5 mg and 75 micro g midazolam in 13 healthy subjects without medication, in four subjects pretreated for 2 days with ketoconazole (200 mg b.i.d.), a CYP3A inhibitor, and in four subjects pretreated for 4 days with rifampicin (450 mg q.d.), a CYP3A inducer. RESULTS: After oral administration of 75 micro g midazolam, the 30-min total (unconjugated + conjugated) 1'OH-midazolam/midazolam ratios measured in the groups without co-medication, with ketoconazole and with rifampicin were (mean+/-SD): 6.23+/-2.61, 0.79+/-0.39 and 56.1+/-12.4, respectively. No side effects were reported by the subjects taking this low dose of midazolam. Good correlations were observed between the 30-min total 1'OH-midazolam/midazolam ratio and midazolam clearance in the group without co-medication (r(2)=0.64, P<0.001) and in the three groups taken together (r(2)=0.91, P<0.0001). Good correlations were also observed between midazolam plasma levels and midazolam clearance, measured between 1.5 h and 4 h. CONCLUSION: A low oral dose of midazolam can be used to phenotype CYP3A, either by the determination of total 1'OH-midazolam/midazolam ratios at 30 min or by the determination of midazolam plasma levels between 1.5 h and 4 h after its administration.