986 resultados para damage production
Resumo:
Background: Exposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.Methods: The effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.Results: Rheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.Conclusions: These results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage. © 2013 Silveira et al; licensee BioMed Central Ltd.
Resumo:
Measuring shikimic acid accumulation in response to glyphosate applications can be a rapid and accurate way to quantify and predict glyphosate-induced damage to sensitive plants. The objective of this paper was to evaluate the effect of cover crop termination timing by glyphosate application on rice (Oryza sativa L.) yield in a no-till system. A factorial experiment, arranged in a split-plot design, was conducted for 2 yr. Treatments consisted of cover crops (main plots) and timed herbicide applications (subplots) to these cover crops (30, 20, 10, and 0 d before rice planting). There was a decrease in rice yield from 2866 kg ha-1 to 2322 kg ha-1 when the herbicide was applied closer to the rice planting day. Glyphosate application on cover crops increased shikimate concentrations in rice seedlings cultivated under palisade grass (Brachiaria brizantha), signal grass (B. ruziziensis), guinea grass (Panicum maximum), and weedy fallow (spontaneous vegetation) but not under millet (Pennisetum glaucum), which behaved similarly to the control (clean fallow, no glyphosate application). Glyphosate applications in the timing intervals used were associated with stress in the rice plants, and this association increased if cover crops took longer to completely dry and if higher amounts of biomass were produced. Millet, as a cover crop, allowed the highest seedling dry matter for upland rice and the highest rice yield. Our results suggest that using millet as a cover crop, with glyphosate application far from upland rice planting day (10 d or more), was the best option for upland rice under a no-tillage system. © Crop Science Society of America.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The routine semen evaluation assessing sperm concentration, motility and morphology, does not identify subtle defects in sperm chromatin architecture. Bulls appear to have stable chromatin, with low levels of DNA fragmentation. However, the nature of fragmentation and its impact on fertility remain unclear and there are no detailed reports characterizing the DNA organization and damage in this species. The intensive genetic selection, the use of artificial insemination and in vitro embryo production associated to the cryopreservation process can contribute to the chromatin damage and highlights the importance of sperm DNA integrity for the success of these technologies. Frozen-thawed semen samples from three ejaculates from a Nellore bull showed high levels of morphological sperm abnormalities (55.8±5.1%), and were selected for complementary tests. Damage of acrosomal (76.9±8.9%) and plasma membranes (75.7±9.3%) as well as sperm DNA strand breaks (13.8±9.5%) and protamination deficiency (3.7±0.6%) were significantly higher compared to the values measured in the semen of five Nellore bulls with normospermia (24.3±3.3%; 24.5±6.1%; 0.6±0.5%; 0.4±0.6% for acrosome, plasma membrane, DNA breaks and protamine deficiency, respectively) (P<0.05). Motility and percentage of spermatozoa with low mitochondrial potential showed no differences between groups. This study shows how routine semen analyses (in this case morphology) may point to the length and complexity of sperm cell damage emphasizing the importance of sperm function testing.
Resumo:
The fact that drugs currently used in the treatment of Leishmania are highly toxic and associated with acquired resistance has promoted the search for new therapies for treating American tegumentary leishmaniasis (ATL). In this study, BALB/c mice were injected in the hind paw with Leishmania (Leishmania) amazonensis and subsequently treated with a combination of nitric oxide (NO) donor (cis-[Ru(bpy)(2)imN(NO)](PF6)(3)) (Ru-NO), given by intraperitoneal injection, and oral Brazilian propolis for 30 days. Ru-NO reached the center of the lesion and increased the NO level in the injured hind paw without lesion exacerbation. Histological and immunological parameters of chronic inflammation showed that this combined treatment increased the efficacy of macrophages, determined by the decrease in the number of parasitized cells, leading to reduced expression of proinflammatory and tissue damage markers. In addition, these drugs in combination fostered wound healing, enhanced the number of fibroblasts, pro-healing cytokines and induced collagen synthesis at the lesion site. Overall, our findings suggest that the combination of the NO donor Ru-NO and Brazilian propolis alleviates experimental ATL lesions, highlighting a new therapeutic option that can be considered for further in vivo investigations as a candidate for the treatment of cutaneous leishmaniasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In Maize (Zea maize L.), cost of hybrid seed production is directly related to the yield and quality of seed obtained per hectare of female parent. It is also important to consider the effects that a male parent can exert on the development of hybrid seed in the female parent. This effect is known as xenia. The objectives of this study were to evaluate xenia effects on 1) yield as 80K units, 2) germination of the hybrid seed and 3) susceptibility of the hybrid seed to mechanical damage. One female inbred and four male inbred lines were selected from a parent list of hybrids. The experiment was designed to allow individual cross pollination between each male inbred and the female inbred line. For use as a control, the female inbred was allowed to self pollinate. Experiments were conducted in Illinois and Iowa during 2008 and 2009 and in Nebraska during 2009. A significant inbred effect was detected on yield as 80k (α=0.001). The selfed female and pollination with male inbred B resulted in lower yields of hybrid seed. For germination, a significant inbred effect was detected (α=0.001), but was due to lower germination percentage of seed produced on the selfed female. All hybrid combinations resulted in higher germination percentages with no significant differences among hybrids. The inbred x mechanical damage interaction was significant (P=0.04) for effects on cold saturated soil germination tests. Use of inbred B resulted in a two-percentage-point reduction in cold germination when treated with the impact simulator. In a maize seed company, the production research group provides yield estimates for production of new hybrid combinations. Results from this study indicate that using only the female inbred yield may provide inaccurate estimates. Therefore to improve yield estimation, experiments should be designed to include male inbreds. Male inbreds can also impart a negative effect to the hybrid seed on tolerance to mechanical damage, thus lowering quality and increasing seed discard. When testing for hybrid seed germination, there is no need to consider distinct hybrid combinations. Female inbreds can be grown in open-pollinated fields to avoid loss of vigor observed with selfing. Advisor: George Graef
Resumo:
To many people, California is synonomous with Disneyland, freeways, Los Angeles smog, Yosemite, the California missions, or for you bird aficionados, the California Condor. But do you think about California when you eat strawberry shortcake? You should -- California leads the nation in strawberry production. How about artichokes? California produces over 98% of the artichokes raised in the United States. Dates? California produces over 99% of the dates in the United States. Yes, California is all of these, and it is much more. California may well be the most diverse state in the United States. Within its 100.2 million acres, California has the lowest place in the U.S. in Death Valley and one of the highest mountains with Mt. Whitney. Because California is such a diverse state and has a wide variety of micro- climates, it supports a uniquely diverse agriculture. Agriculture uses only about 36 million acres of its total 100.2 million acres, and most of the cash return from crops is produced on 8,6 million acres that are irrigated. California produces about 250 crops and livestock commodities (excluding nursery crops) and provides the U.S. with about 25% of its table foods. California leads the nation in the production of 46 commercial crops and livestock commodities; its farmers and ranchers marketed $8.6 billion of crop and livestock products in 1975, and the state’s harvested farm production in 1975 set a new record at 51.1 million tons. HISTORY OF BIRD PROBLEMS Records such as this are not achieved without some risk. Crops growing in Cali- fornia have always had competition from many types of vertebrate pests. The wide variety of crops grown in California and the varied climates and situations in which they are grown has resulted in many different species of birds damaging crops. Birds have compet- ed with man for his crops since the dawn of agriculture. McAtee (1932) cited examples of bird damage that occurred in a wide variety of crops in California during the early 1900s. During the 1920s, many requests for Information and relief from damage caused by a wide variety of birds, culminated in the assignment, in May 1929, of two biologists, S. E. Piper and Johnson Neff, of the former U.S. Bio- logical Survey, to initiate field studies in California. In cooperation with the Cali- fornia Department of Food and Agriculture and County Agricultural Commissioners, the study was to determine the problems and devise control procedures relative to bird depredations. Piper and Neff found such damage as Horned Larks pulling sprouting crops, House Finches disbudding deciduous fruit trees and devouring mature fruit. Blackbirds were a problem in the rice crop. Early controls were varied and, for the most part, lacked effectiveness. Flagging of fields was common to deter Horned Larks. Windmill devices were tried to frighten birds. Shooting to kill birds was common; scarecrows were.used. The six-year study brought forth the basis of most of the depredating bird control techniques still in use in California. At the end of the study, these two biologists compiled a book called “Procedure and Methods in Controlling Birds Injurious to Crops in California.” This was and still is the “Bible” for bird damage control techniques used in California. The thorough investigations conducted by these biologists resulted in techniques that have remained valid in California for over 40 years.
Resumo:
The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil`s sugarcane plantations are located and are responsible for 62% of ethanol production. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sporotrichosis is a chronic granulomatous mycosis caused by the dimorphic fungus Sporothrix schenckii. The immunological mechanisms involved in the prevention and control of sporotrichosis suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. Nonetheless, recent data strongly support the existence of protective Abs against this pathogenic fungus. In a previous study, we showed that passive Ab therapy led to a significant reduction in the number of colony forming unit in the organs of mice when the MAb was injected before and during S. schenckii infection. The ability of opsonization to enhance macrophage damage to S. schenckii and subsequent cytokine production was investigated in this work. Here we show that the fungicidal characteristics of macrophages are increased when the fungus is phagocytosed in the presence of inactivated serum from mice infected with S. schenckii or mAb anti-gp70. Additionally, we show an increase in the levels of pro-inflammatory cytokines such as TNF-a and IL-1 beta. This study provides additional support for the importance of antibodies in protecting against S. schenckii and concludes that opsonization is an important process to increase TNF-a production and fungus killing by macrophages in experimental sporotrichosis.
Resumo:
Background: Soybean oil is rich in omega-6 fatty acids, which are associated with higher incidence and more severe cases of inflammatory bowel diseases. The authors evaluated whether partial replacement of soybean oil by medium-chain triglycerides (MCTs) or olive oil influenced the incidence and severity of experimental ulcerative colitis by using different parenteral lipid emulsions (LEs). Methods: Wistar rats (n = 40) were randomized to receive parenteral infusion of the following LE: 100% soybean oil (SO), 50% MCT mixed with 50% soybean oil (MCT/SO), 80% olive oil mixed with 20% soybean oil (OO/SO), or saline (CC). After 72 hours of infusion, acetic acid experimental colitis was induced. After 24 hours, colon histology and cytokine expression were analyzed. Results: SO was not significantly associated with overall tissue damage. MCT/SO was not associated with necrosis (P < .005), whereas OO/SO had higher frequencies of ulcer and necrosis (P < .005). SO was associated with increased expression of interferon-gamma (P = .005) and OO/SO with increased interleukin (IL)-6 and decreased tumor necrosis factor-alpha expression (P < .05). MCT/SO appeared to decrease IL-1 (P < .05) and increase IL-4 (P < .001) expression. Conclusions: Parenteral SO with high concentration of omega-6 fatty acids was not associated with greater tissue damage in experimental colitis. SO partial replacement with MCT/SO decreased the frequency of histological necrosis and favorably modulated cytokine expression in the colon; however, replacement with OO/SO had unfavorable effects. (JPEN J Parenter Enteral Nutr. 2012; 36: 442-448)
Resumo:
Introduction. Neutrophil Gelatinase-Associated Lipocalin (NGAL) belongs to the family of lipocalins and it is produced by several cell types, including renal tubular epithelium. In the kidney its production increases during acute damage and this is reflected by the increase in serum and urine levels. In animal studies and clinical trials, NGAL was found to be a sensitive and specific indicator of acute kidney injury (AKI). Purpose. The aim of this work was to investigate, in a prospective manner, whether urine NGAL can be used as a marker in preeclampsia, kidney transplantation, VLBI and diabetic nephropathy. Materials and methods. The study involved 44 consecutive patients who received renal transplantation; 18 women affected by preeclampsia (PE); a total of 55 infants weighing ≤1500 g and 80 patients with Type 1 diabetes. Results. A positive correlation was found between urinary NGAL and 24 hours proteinuria within the PE group. The detection of higher uNGAL values in case of severe PE, even in absence of statistical significance, confirms that these women suffer from an initial renal damage. In our population of VLBW infants, we found a positive correlation of uNGAL values at birth with differences in sCreat and eGFR values from birth to day 21, but no correlation was found between uNGAL values at birth and sCreat and eGFR at day 7. systolic an diastolic blood pressure decreased with increasing levels of uNGAL. The patients with uNGAL <25 ng/ml had significantly higher levels of systolic blood pressure compared with the patients with uNGAL >50 ng/ml ( p<0.005). Our results indicate the ability of NGAL to predict the delay in functional recovery of the graft. Conclusions. In acute renal pathology, urinary NGAL confirms to be a valuable predictive marker of the progress and status of acute injury.
Resumo:
Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.