967 resultados para cytotoxic assay
Resumo:
A new bioluminescent creatine kinase (CK) assay using purified luciferase was used to analyse CK activity in serum samples dried on filter paper. Enzyme activity was preserved for over 1 wk on paper stored at room temperature. At 60°C, CK activity in liquid serum samples was rapidly inactivated, but the activity of enzyme stored on paper was preserved for at least 2 days.
Resumo:
Estimation of total protein concentration is an essential step in any protein- or peptide-centric analysis pipeline. This study demonstrates that urobilin, a breakdown product of heme and a major constituent of urine, interferes considerably with the bicinchoninic acid (BCA) assay. This interference is probably due to the propensity of urobilin to reduce cupric ions (Cu2+) to cuprous ions (Cu1+), thus mimicking the reduction of copper by proteins, which the assay was designed to do. In addition, it is demonstrated that the Bradford assay is more resistant to the influence of urobilin and other small molecules. As such, urobilin has a strong confounding effect on the estimate of total protein concentrations obtained by BCA assay and thus this assay should not be used for urinary protein quantification. It is recommended that the Bradford assay be used instead.
Resumo:
Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Resumo:
Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity $D$, and the cell proliferation rate �$\lambda$. Scratch assays are a commonly-reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched and the motion of the front is monitored over a short period of time, often less than 24 hours. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Leading edge data is very convenient since, unlike other methods, it is nondestructive and does not require labeling, tracking or counting individual cells amongst the population. In this work we study short time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allows us to reliably identify $D$ and $\lambda$�. Using a naıve calibration approach where we simply scan the relevant region of the ($D$;$\lambda$�) parameter space, we show that there are many choices of $D$ and $\lambda$� for which our model produces indistinguishable short time leading edge data. Therefore, without due care, it is impossible to estimate $D$ and $\lambda$� from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information we divide the duration of the experiment into two periods, and we estimate $D$ using data from the first period, while we estimate �$\lambda$ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of $D$ and $\lamdba$� that are consistent with previously-reported values except that that our approach is fast, inexpensive, nondestructive and avoids the need for cell labeling and cell counting.
Resumo:
We present a mini-scale method for nuclear run-on transcription assay. In our method, all the centrifuge steps can be carried out by using micro-tubes for short time (5 min each) throughout the process, including isolation of transcriptionally active nuclei and purification of labeled RNA after synthesis of RNA in isolated nuclei. The assay can be performed using a small amount of plant tissue, which enables analysis of developmental changes in transcriptional status of given genes in a single individual plant. Successful results were obtained using the tissues of flower and leaf of petunia and embryo of pea, suggesting that the method is potentially applicable to a variety of plant tissues.
Resumo:
Replacement of endogenous genes by homologous recombination is rare in plants; the majority of genetic modifications are the result of transforming DNA molecules undergoing random genomic insertion by way of non-homologous recombination. Factors that affect chromatin remodeling and DNA repair are thought to have the potential to enhance the frequency of homologous recombination in plants. Conventional tools to study the frequencies of genetic recombination often rely on stable transformation-based approaches, with these systems being rarely capable of high-throughput or combinatorial analysis. We developed a series of vectors that use chemiluminescent (LUC and REN) reporter genes to assay the relative frequency of homologous and non-homologous recombination in plants. These transient assay vectors were used to screen 14 candidategenes for their effects on recombination frequencies in Nicotiana benthamiana plants. Over-expression of Arabidopsis genes with sequence similarity to SNM1 from yeast and XRCC3 from humans enhanced the frequency of non-homologous recombination when assayed using two different donor vectors. Transient N. benthamiana leaf systems were also used in an alternative assay for preliminary measurements of homologous recombination frequencies, which were found to be enhanced by over-expression of RAD52, MIM and RAD51 from yeast, as well as CHR24 from Arabidopsis. The findings for the assays described here are in line with previous studies that analyzed recombination frequencies using stable transformation. The assays we report have revealed functions in non-homologous recombination for the Arabidopsis SNM1 and XRCC3 genes, so the suppression of these genes' expression offers a potential means to enhance the gene targeting frequency in plants. Furthermore, our findings also indicate that plant gene targeting frequencies could be enhanced by over-expression of RAD52, MIM, CHR24, and RAD51 genes.
Human breast cancer cell metastasis to long bone and soft organs of nude mice : a quantitative assay
Resumo:
Bone is a common metastatic site in human breast cancer (HBC). Since bone metastasis occurs very rarely from current spontaneous or experimental metastasis models of HBC cells in nude mice, an arterial seeding model involving the direct injection of the cells into the left ventricle has been developed to better understand the mechanisms involved in this process. We present here a sensitive polymerase chain reaction (PCR) method to detect and quantitate bone and soft organ metastasis in nude mice which have been intracardially inoculated with Lac Z transduced HBC cells. Amplification of genomically incorporated Lac Z sequences in MDA-MB-231-BAG HBC cells enables us to specifically detect these cells in mouse organs and bones. We have also created a competitive template to use as an internal standard in the PCR reactions, allowing us to better quantitate levels of HBC metastasis. The results of this PCR detection method correlate well with cell culture detection from alternate long bones from the same mice, and are more sensitive than gross Lac Z staining with X-gal or routine histology. Comparable qualitative results were obtained with PCR and culture in a titration experiment in which mice were inoculated with increasing numbers of cells, but PCR is more quantifiable, less time consuming, and less expensive. This assay can be employed to study the molecular and cellular aspects of bone metastasis, and could easily be used in conjunction with RT-PCR-based analyses of gene products which may be involved with HBC metastasis.
Resumo:
Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.
Resumo:
Nowadays, the emergence of resistance to the current available chemotherapeutic drugs by cancer cells makes the development of new agents imperative. The skin secretion of amphibians is a natural rich source of antimicrobial peptides (AMP), and researchers have shown that some of these wide spectrum molecules are also toxic to cancer cells. The aim of this study was to verify a putative anticancer activity of the AMP pentadactylin isolated for the first time from the skin secretion of the frog Leptodactylus labyrinthicus and also to study its cytotoxic mechanism to the murine melanoma cell line B16F10. The results have shown that pentadactylin reduces the cell viability of B16F10 cells in a dose-dependent manner. It was also cytotoxic to normal human fibroblast cells; nevertheless, pentadactylin was more potent in the first case. The studies of action mechanism revealed that pentadactylin causes cell morphology alterations (e.g., round shape and shrinkage morphology), membrane disruption, DNA fragmentation, cell cycle arrest at the S phase, and alteration of mitochondrial membrane potential, suggesting that B16F10 cells die by apoptosis. The exact mechanism that causes reduction of cell viability and cytotoxicity after treatment with pentadactylin is still unknown. In conclusion, as cancer cells become resilient to death, it is worthwhile the discovery of new drugs such as pentadactylin that induces apoptosis.
Resumo:
The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8alphaalpha and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-gamma and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.
Resumo:
Chemical investigations of the Australian marine sponge Ecionemia geodides resulted in the isolation of two new pyridoacridine alkaloids, ecionines A (1) and B (2), along with the previously isolated marine natural products, biemnadin (3) and meridine (4). Compounds 1 and 2 both contain an imine moiety, which is rare for the pyridoacridine structure class. The chemical structures of 1 and 2 were determined by extensive 1D and 2D NMR and MS data analyses. All compounds were tested against a panel of human bladder cancer cell lines, the increasingly metastatic TSU-Pr1 series (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1- B2) and the superficial bladder cancer cell line 5637. Ecionine A (1) displayed cytotoxicity against all cell lines, with IC50 values ranging from 3 to 7 mM. This is the first report of chemistry from the sponge genus Ecionemia.
Resumo:
Forty-six archaeological specimens were treated by fire-assay and subsequently analysed by ICP-MS for selected precious metals: Ph, Pt and Au. The investigation was prompted by the possibility that archaeological samples could serve as "indicators" of the precious metal composition of the clays from the excavated sites. Therefore, the experimentally obtained concentrations were carefully studied to determine if there were anomalous levels of these precious metals in the deposits from which the specimens originated. Furthermore, the analytical data were used to establish if it was feasible to distinguish ancient potsherds based on precious metal concentrations, for employment as a basis in provenance studies.
Resumo:
Background: Cardiovascular disease is the leading cause of death in the world. Human C-reactive protein (CRP) has been used in the risk assessment of coronary events. Human saliva mirrors the body's health and well-being and is non-invasive, easy to collect and ideal for third world countries as well as for large patient screening. The aim was to establish a saliva CRP reference range and to demonstrate the clinical utility of salivary CRP levels in assessing the coronary events in a primary health care setting. Methods: We have used a homogeneous bead based assay to detect CRP levels in human saliva. We have developed a rapid 15 min (vs 90 min), sequential, one-step assay to detect CRP in saliva. Saliva was collected from healthy volunteers (n = 55, ages 20-70 years) as well as from cardiac patients (n = 28, ages 43-86 years). Results: The assay incubation time was optimised from 90 min to 15 mm and generated a positive correlation (n = 29, range 10-2189 pg/mL, r2 = 0.94; Passing Bablok slope 0.885. Intercept 0, p>0.10), meaning we could decrease the incubation time and produce equivalent results with confidence. The mean CRP level in the saliva of healthy human volunteers was 285 pg/mL and in cardiac patients was 1680 pg/mL (p<0.01). Analysis of CRP concentrations in paired serum and saliva samples from cardiac patients gave a positive correlation (r2 = 0.84, p<0.001) and the salivary CRP concentration capable of distinguishing healthy from diseased patients. Conclusions: The results suggest that this minimally invasive, rapid and sensitive assay will be useful in large patient screening studies for risk assessment of coronary events. (C) 2011 Elsevier B.V. All rights reserved.