992 resultados para climate feedback
Resumo:
Objective: Check the perception of dentists about safety climate at work in relation to adherence to standard precautions.Methods: It is a quantitative, cross-sectional study conducted through the application of the Safety Climate Scale to a population of 224 dentists who worked in units of primary health care in six municipalities of Parana.Results: The total score of 3.43 (SD = 0.88) reveals that dentists have a poor perception of the incentives and organizational support for adopting standard precautions.Conclusion: Unsatisfactory safety climate, where the perception of dentists about safety in their work environment is deficient, demonstrating fragile management actions of support to safety, lack of a training program in occupational health and deficient feedback to favor the adoption of safe practices.
Resumo:
This study aims at a comprehensive understanding of the effects of aerosol-cloud interactions and their effects on cloud properties and climate using the chemistry-climate model EMAC. In this study, CCN activation is regarded as the dominant driver in aerosol-cloud feedback loops in warm clouds. The CCN activation is calculated prognostically using two different cloud droplet nucleation parameterizations, the STN and HYB CDN schemes. Both CDN schemes account for size and chemistry effects on the droplet formation based on the same aerosol properties. The calculation of the solute effect (hygroscopicity) is the main difference between the CDN schemes. The kappa-method is for the first time incorporated into Abdul-Razzak and Ghan activation scheme (ARG) to calculate hygroscopicity and critical supersaturation of aerosols (HYB), and the performance of the modied scheme is compared with the osmotic coefficient model (STN), which is the standard in the ARG scheme. Reference simulations (REF) with the prescribed cloud droplet number concentration have also been carried out in order to understand the effects of aerosol-cloud feedbacks. In addition, since the calculated cloud coverage is an important determinant of cloud radiative effects and is influencing the nucleation process two cloud cover parameterizations (i.e., a relative humidity threshold; RH-CLC and a statistical cloud cover scheme; ST-CLC) have been examined together with the CDN schemes, and their effects on the simulated cloud properties and relevant climate parameters have been investigated. The distinct cloud droplet spectra show strong sensitivity to aerosol composition effects on cloud droplet formation in all particle sizes, especially for the Aitken mode. As Aitken particles are the major component of the total aerosol number concentration and CCN, and are most sensitive to aerosol chemical composition effect (solute effect) on droplet formation, the activation of Aitken particles strongly contribute to total cloud droplet formation and thereby providing different cloud droplet spectra. These different spectra influence cloud structure, cloud properties, and climate, and show regionally varying sensitivity to meteorological and geographical condition as well as the spatiotemporal aerosol properties (i.e., particle size, number, and composition). The changes responding to different CDN schemes are more pronounced at lower altitudes than higher altitudes. Among regions, the subarctic regions show the strongest changes, as the lower surface temperature amplifies the effects of the activated aerosols; in contrast, the Sahara desert, where is an extremely dry area, is less influenced by changes in CCN number concentration. The aerosol-cloud coupling effects have been examined by comparing the prognostic CDN simulations (STN, HYB) with the reference simulation (REF). Most pronounced effects are found in the cloud droplet number concentration, cloud water distribution, and cloud radiative effect. The aerosol-cloud coupling generally increases cloud droplet number concentration; this decreases the efficiency of the formation of weak stratiform precipitation, and increases the cloud water loading. These large-scale changes lead to larger cloud cover and longer cloud lifetime, and contribute to high optical thickness and strong cloud cooling effects. This cools the Earth's surface, increases atmospheric stability, and reduces convective activity. These changes corresponding to aerosol-cloud feedbacks are also differently simulated depending on the cloud cover scheme. The ST-CLC scheme is more sensitive to aerosol-cloud coupling, since this scheme uses a tighter linkage of local dynamics and cloud water distributions in cloud formation process than the RH-CLC scheme. For the calculated total cloud cover, the RH-CLC scheme simulates relatively similar pattern to observations than the ST-CLC scheme does, but the overall properties (e.g., total cloud cover, cloud water content) in the RH simulations are overestimated, particularly over ocean. This is mainly originated from the difference in simulated skewness in each scheme: the RH simulations calculate negatively skewed distributions of cloud cover and relevant cloud water, which is similar to that of the observations, while the ST simulations yield positively skewed distributions resulting in lower mean values than the RH-CLC scheme does. The underestimation of total cloud cover over ocean, particularly over the intertropical convergence zone (ITCZ) relates to systematic defficiency of the prognostic calculation of skewness in the current set-ups of the ST-CLC scheme.rnOverall, the current EMAC model set-ups perform better over continents for all combinations of the cloud droplet nucleation and cloud cover schemes. To consider aerosol-cloud feedbacks, the HYB scheme is a better method for predicting cloud and climate parameters for both cloud cover schemes than the STN scheme. The RH-CLC scheme offers a better simulation of total cloud cover and the relevant parameters with the HYB scheme and single-moment microphysics (REF) than the ST-CLC does, but is not very sensitive to aerosol-cloud interactions.
Resumo:
The Atlantic subpolar gyre (SPG) is one of the main drivers of decadal climate variability in the North Atlantic. Here we analyze its dynamics in pre-industrial control simulations of 19 different comprehensive coupled climate models. The analysis is based on a recently proposed description of the SPG dynamics that found the circulation to be potentially bistable due to a positive feedback mechanism including salt transport and enhanced deep convection in the SPG center. We employ a statistical method to identify multiple equilibria in time series that are subject to strong noise and analyze composite fields to assess whether the bistability results from the hypothesized feedback mechanism. Because noise dominates the time series in most models, multiple circulation modes can unambiguously be detected in only six models. Four of these six models confirm that the intensification is caused by the positive feedback mechanism.
Resumo:
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.
Resumo:
Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.
Resumo:
Next to leisure, sport, and household activities, the most common activity resulting in medically consulted injuries and poisonings in the United States is work, with an estimated 4 million workplace related episodes reported in 2008 (U.S. Department of Health and Human Services, 2009). To address the risks inherent to various occupations, risk management programs are typically put in place that include worker training, engineering controls, and personal protective equipment. Recent studies have shown that such interventions alone are insufficient to adequately manage workplace risks, and that the climate in which the workers and safety program exist (known as the "safety climate") is an equally important consideration. The organizational safety climate is so important that many studies have focused on developing means of measuring it in various work settings. While safety climate studies have been reported for several industrial settings, published studies on assessing safety climate in the university work setting are largely absent. Universities are particularly unique workplaces because of the potential exposure to a diversity of agents representing both acute and chronic risks. Universities are also unique because readily detectable health and safety outcomes are relatively rare. The ability to measure safety climate in a work setting with rarely observed systemic outcome measures could serve as a powerful means of measure for the evaluation of safety risk management programs. ^ The goal of this research study was the development of a survey tool to measure safety climate specifically in the university work setting. The use of a standardized tool also allows for comparisons among universities throughout the United States. A specific study objective was accomplished to quantitatively assess safety climate at five universities across the United States. At five universities, 971 participants completed an online questionnaire to measure the safety climate. The average safety climate score across the five universities was 3.92 on a scale of 1 to 5, with 5 indicating very high perceptions of safety at these universities. The two lowest overall dimensions of university safety climate were "acknowledgement of safety performance" and "department and supervisor's safety commitment". The results underscore how the perception of safety climate is significantly influenced at the local level. A second study objective regarding evaluating the reliability and validity of the safety climate questionnaire was accomplished. A third objective fulfilled was to provide executive summaries resulting from the questionnaire to the participating universities' health & safety professionals and collect feedback on usefulness, relevance and perceived accuracy. Overall, the professionals found the survey and results to be very useful, relevant and accurate. Finally, the safety climate questionnaire will be offered to other universities for benchmarking purposes at the annual meeting of a nationally recognized university health and safety organization. The ultimate goal of the project was accomplished and was the creation of a standardized tool that can be used for measuring safety climate in the university work setting and can facilitate meaningful comparisons amongst institutions.^
Resumo:
The present study analyses the sign, strength, and working mechanism of the vegetation-precipitation feedback over North Africa in middle (6 ka BP) and early Holocene (9 ka BP) simulations using the comprehensive coupled climate-vegetation model CCSM3-DGVM (Community Climate System Model version 3 and a dynamic global vegetation model). The coupled model simulates enhanced summer rainfall and a northward migration of the West African monsoon trough along with an expansion of the vegetation cover for the early and middle Holocene compared to the pre-industrial period. It is shown that dynamic vegetation enhances the orbitally triggered summer precipitation anomaly by approximately 20% in the Sahara-Sahel region (10-25° N, 20° W-30° E) in both the early and mid-Holocene experiments compared to their fixed-vegetation counterparts. The primary vegetation-rainfall feedback identified here operates through surface latent heat flux anomalies by canopy evaporation and transpiration and their effect on the mid-tropospheric African easterly jet, whereas the effects of vegetation changes on surface albedo and local water recycling play a negligible role. Even though CCSM3-DGVM simulates a positive vegetation-precipitation feedback in the North African region, this feedback is not strong enough to produce multiple equilibrium climate-ecosystem states on a regional scale.
Resumo:
The ECHAM-1 T21/LSG coupled ocean-atmosphere general circulation model (GCM) is used to simulate climatic conditions at the last interglacial maximum (Eemian. 125 kyr BP). The results reflect thc expected surface temperature changes (with respect to the control run) due to the amplification (reduction) of the seasonal cycle of insolation in the Northern (Southern) Hemisphere. A number of simulated features agree with previous results from atmospheric GCM simulations e.g. intensified summer southwest monsoons) except in the Northern Hemisphere poleward of 30 degrees N. where dynamical feedback, in the North Atlantic and North Pacific increase zonal temperatures about 1 degrees C above what would be predicted from simple energy balance considerations. As this is the same area where most of the terrestrial geological data originate, this result suggests that previous estimates of Eemian global average temperature might have been biased by sample distribution. This conclusion is supported by the fact that the estimated global temperature increase of only 0.3 degrees C greater than the control run ha, been previously shown to be consistent a with CLIMAP sea surface temperature estimates. Although the Northern Hemisphere summer monsoon is intensified. globally averaged precipitation over land is within about 1% of the present, contravening some geological inferences bur not the deep-sea delta(13)C estimates of terrestrial carbon storage changes. Winter circulation changes in the northern Arabian Sea. driven by strong cooling on land, are as large as summer circulation changes that are the usual focus of interest, suggesting that interpreting variations in the Arabian Sea. sedimentary record solely in terms of the summer monsoon response could sometimes lead to errors. A small monsoonal response over northern South America suggests that interglacial paleotrends in this region were not just due to El Nino variations.
Resumo:
Understanding how climate change will affect the planet is a key issue worldwide. Questions concerning the pace and impacts of climate change are thus central to many ecological and biogeochemical studies, and addressing the consequences of climate change is now high on the list of priorities for funding agencies. Here, we review the interactions between climate change and plankton communities, focusing on systematic changes in plankton community structure, abundance, distribution and phenology over recent decades. We examine the potential socioeconomic impacts of these plankton changes, such as the effects of bottom-up forcing on commercially exploited fish stocks (i.e. plankton as food for fish). We also consider the crucial roles that plankton might have in dictating the future pace of climate change via feedback mechanisms responding to elevated atmospheric CO2 levels. An important message emerges from this review: ongoing plankton monitoring programmes worldwide will act as sentinels to identify future changes in marine ecosystems.
Resumo:
Several mechanisms for self-enhancing feedback instabilities in marine ecosystems are identified and briefly elaborated. It appears that adverse phases of operation may be abruptly triggered by explosive breakouts in abundance of one or more previously suppressed populations. Moreover, an evident capacity of marine organisms to accomplish extensive geographic habitat expansions may expand and perpetuate a breakout event. This set of conceptual elements provides a framework for interpretation of a sequence of events that has occurred in the Northern Benguela Current Large Marine Ecosystem (off south-western Africa). This history can illustrate how multiple feedback loops might interact with one another in unanticipated and quite malignant ways, leading not only to collapse of customary resource stocks but also to degradation of the ecosystem to such an extent that disruption of customary goods and services may go beyond fisheries alone to adversely affect other major global ecosystem concerns (e.g. proliferations of jellyfish and other slimy, stingy, toxic and/or noxious organisms, perhaps even climate change itself, etc.). The wisdom of management interventions designed to interrupt an adverse mode of feedback operation is pondered. Research pathways are proposed that may lead to improved insights needed: (i) to avoid potential 'triggers' that might set adverse phases of feedback loop operation into motion; and (ii) to diagnose and properly evaluate plausible actions to reverse adverse phases of feedback operation that might already have been set in motion. These pathways include the drawing of inferences from available 'quasi-experiments' produced either by short-term climatic variation or inadvertently in the course of biased exploitation practices, and inter-regional applications of the comparative method of science.
Resumo:
There is good evidence that higher global temperature will promote a rise of green house gas levels, implying a positive feedback which will increase the effect of the anthropogenic emissions on global temperatures. Here we present a review about the results which deal with the possible feedbacks between ecosystems and the climate system. There are a lot of types of feedback which are classified. Some circulation models are compared to each other regarding their role in interactive carbon cycle.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Global environmental changes (GEC) such as climate change (CC) and climate variability have serious impacts in the tropics, particularly in Africa. These are compounded by changes in land use/land cover, which in turn are driven mainly by economic and population growth, and urbanization. These factors create a feedback loop, which affects ecosystems and particularly ecosystem services, for example plant-insect interactions, and by consequence agricultural productivity. We studied effects of GEC at a local level, using a traditional coffee production area in greater Nairobi, Kenya. We chose coffee, the most valuable agricultural commodity worldwide, as it generates income for 100 million people, mainly in the developing world. Using the coffee berry borer, the most serious biotic threat to global coffee production, we show how environmental changes and different production systems (shaded and sun-grown coffee) can affect the crop. We combined detailed entomological assessments with historic climate records (from 1929-2011), and spatial and demographic data, to assess GEC's impact on coffee at a local scale. Additionally, we tested the utility of an adaptation strategy that is simple and easy to implement. Our results show that while interactions between CC and migration/urbanization, with its resultant landscape modifications, create a feedback loop whereby agroecosystems such as coffee are adversely affected, bio-diverse shaded coffee proved far more resilient and productive than coffee grown in monoculture, and was significantly less harmed by its insect pest. Thus, a relatively simple strategy such as shading coffee can tremendously improve resilience of agro-ecosystems, providing small-scale farmers in Africa with an easily implemented tool to safeguard their livelihoods in a changing climate.
Resumo:
Receiving personalised feedback on body mass index and other health risk indicators may prompt behaviour change. Few studies have investigated men’s reactions to receiving objective feedback on such measures and detailed information on physical activity and sedentary time. The aim of my research was to understand the meanings different forms of objective feedback have for overweight/obese men, and to explore whether these varied between groups. Participants took part in Football Fans in Training, a gender-sensitised, weight loss programme delivered via Scottish Professional Football Clubs. Semi-structured interviews were conducted with 28 men, purposively sampled from four clubs to investigate the experiences of men who achieved and did not achieve their 5% weight loss target. Data were analysed using the principles of thematic analysis and interpreted through Self-Determination Theory and sociological understandings of masculinity. Several factors were vital in supporting a ‘motivational climate’ in which men could feel ‘at ease’ and adopt self-regulation strategies: the ‘place’ was described as motivating, whereas the ‘people’ (other men ‘like them’; fieldwork staff; community coaches) provided supportive and facilitative roles. Men who achieved greater weight loss were more likely to describe being motivated as a consequence of receiving information on their objective health risk indicators. They continued using self-monitoring technologies after the programme as it was enjoyable; or they had redefined themselves by integrating new-found activities into their lives and no longer relied on external technologies/feedback. They were more likely to see post-programme feedback as confirmation of success, so long as they could fully interpret the information. Men who did not achieve their 5% weight loss reported no longer being motivated to continue their activity levels or self-monitor them with a pedometer. Social support within the programme appeared more important. These men were also less positive about objective post-programme feedback which confirmed their lack of success and had less utility as a motivational tool. Providing different forms of objective feedback to men within an environment that has intrinsic value (e.g. football club setting) and congruent with common cultural constructions of masculinity, appears more conducive to health behaviour change.