907 resultados para cerebral ischemia
Resumo:
Free radicals have been implicated in various pathological conditions such as, stroke, aging and ischemic heart disease (IHD), as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s disease. The role of antioxidants in protection from the harmful effects of free radicals has long been recognized. Trapping extremely reactive free radicals and eliminating them from circulation has been shown to be effective in animal models. Nitrone-based free radical traps have been extensively explored in biological systems. Examples include nitrones such as PBN, NXY-059, MDL-101,002, DMPO and EMPO. However, these nitrones have extremely high oxidation potentials as compared to natural antioxidants such as Vitamin E (á-tocopherol), and glutathione. Becker et al. (1995) synthesized novel azulenyl nitrones, which were shown to have oxidation potentials much lower than that of any of the previously reported nitrone based spin traps. Another azulenyl nitrone derivative, stilbazulenyl nitrone (STAZN), was shown to have an even lower oxidation potential within the range of natural antioxidants. STAZN, a second generation free radical trap, was found to be markedly superior than the two most studied nitrones, PBN and NXY-059, in animal models of cerebral ischemia and in an in vitro assay of lipid peroxidation. In this study, a third generation azulenyl nitrone was synthesized with an electron donating group on the previously synthesized STAZN derivative with the aim to lower the oxidation potential even more. Pseudoazulenes, because of the presence of an annular heteroatom, have been reported to possess even lower oxidation potential than that of the azulenyl counterpart. Therefore, pseudoazulenyl nitrones were synthesized for the first time by extracting and elaborating valtrate from the roots of Centranthus ruber (Red valerian or Jupiter’s beard). Several pseudoazulenyl nitrones were synthesized by using a facile experimental protocol. The physical and biological properties of these pseudoazulenyl nitrones can be easily modified by simply changing the substituent on the heteroatom. Cyclic voltammetry experiments have shown that these pseudoazulenyl nitrones do indeed have low oxidation potentials. The oxidation potential of these nitrones was lowered even more by preparing derivatives bearing an electron donating group at the 3-position of the five membered ring of the pseudoazulenyl nitrone.
Resumo:
Background and Purpose—As a research community, we have failed to demonstrate that drugs which show substantial efficacy in animal models of cerebral ischemia can also improve outcome in human stroke. Summary of Review—Accumulating evidence suggests this may be due, at least in part, to problems in the design, conduct and reporting of animal experiments which create a systematic bias resulting in the overstatement of neuroprotective efficacy. Conclusions—Here, we set out a series of measures to reduce bias in the design, conduct and reporting of animal experiments modeling human stroke.
Resumo:
17 p.
Resumo:
The Valsalva maneuver (VM) produces large and abrupt changes in mean arterial pressure (MAP) that challenge cerebral blood flow and oxygenation. We examined the effect of VM intensity on middle cerebral artery blood velocity (MCAv) and cortical oxygenation responses during (phases I-III) and following (phase IV) a VM. Healthy participants (n = 20 mean +/- SD: 27 +/- 7 years) completed 30 and 90% of their maximal VM mouth pressure for 10 s (order randomized) whilst standing. Beat-to-beat MCAv, cerebral oxygenation (NIRS) and MAP across the different phases of the VM are reported as the difference from standing baseline. There were significant interaction (phase * intensity) effects for MCAv, total oxygenation index (TOI) and MAP (all P < 0.01). MCAv decreased during phases II and III (P < 0.01), with the greatest decrease during phase III (-5 +/- 8 and -19 +/- 15 cm.s(-1) for 30 and 90% VM, respectively). This pattern was also evident in TOI (phase III: -1 +/- 1 and -5 +/- 4%, both P < 0.05). Phase IV increased MCAv (22 +/- 15 and 34 +/- 23 cm.s(-1)), MAP (15 +/- 14 and 24 +/- 17 mm Hg) and TOI (5 +/- 6 and 7 +/- 5%) relative to baseline (all P < 0.05). Cerebral autoregulation, indexed, as the % MCAv/%MAP ratio, showed a phase effect only (P < 0.001), with the least regulation during phase IV (2.4 +/- 3.0 and 3.2 +/- 2.9). These data illustrate that an intense VM profoundly affects cerebral hemodynamics, with a reactive hyperemia occurring during phase IV following modest ischemia during phases II and III.
Resumo:
Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.
Resumo:
Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.
Resumo:
After ischemic stroke, the ischemic damage to brain tissue evolves over time and with an uneven spatial distribution. Early irreversible changes occur in the ischemic core, whereas, in the penumbra, which receives more collateral blood flow, the damage is more mild and delayed. A better characterization of the penumbra, irreversibly damaged and healthy tissues is needed to understand the mechanisms involved in tissue death. MRSI is a powerful tool for this task if the scan time can be decreased whilst maintaining high sensitivity. Therefore, we made improvements to a (1) H MRSI protocol to study middle cerebral artery occlusion in mice. The spatial distribution of changes in the neurochemical profile was investigated, with an effective spatial resolution of 1.4 μL, applying the protocol on a 14.1-T magnet. The acquired maps included the difficult-to-separate glutamate and glutamine resonances and, to our knowledge, the first mapping of metabolites γ-aminobutyric acid and glutathione in vivo, within a metabolite measurement time of 45 min. The maps were in excellent agreement with findings from single-voxel spectroscopy and offer spatial information at a scan time acceptable for most animal models. The metabolites measured differed with respect to the temporal evolution of their concentrations and the localization of these changes. Specifically, lactate and N-acetylaspartate concentration changes largely overlapped with the T(2) -hyperintense region visualized with MRI, whereas changes in cholines and glutathione affected the entire middle cerebral artery territory. Glutamine maps showed elevated levels in the ischemic striatum until 8 h after reperfusion, and until 24 h in cortical tissue, indicating differences in excitotoxic effects and secondary energy failure in these tissue types. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
La lesión neurológica es un riesgo latente en pacientes sometidos a cirugía cardiaca, en cirugía para corrección de cardiopatías congénitas puede tener una incidencia tan alta como del 26%, por lo cual es necesario contar con herramientas cada vez más acertadas y que puedan ayudar a disminuir esta incidencia; la saturación regional cerebral medida por NIRS constituye una herramienta válida, que permite una evaluación continua y de forma no invasiva, que puede servir para este fin. El presente estudio pretende determinar una asociación entre los niveles de saturación regional de oxígeno cerebral en los pacientes con cardiopatías congénitas cianosantes y las variables fisiológicas determinantes del aporte de oxígeno, asumiendo una hipoxemia crónica para estos pacientes. Se realizó un estudio de correlación para estas variables, para lo cual se evaluaron de forma sistemática estas en pacientes sometidos a cirugía cardiaca en la Fundación Cardioinfantil Instituto de Cardiología, que cumplían con los criterios de inclusión, hasta completar una muestra de 31 pacientes, en los cuales no se realizó ninguna intervención, catalogándolo como riesgo menor que el mínimo, cumpliendo con los criterios de Helsinki.Se encontró una correlación significativa entre los valores de NIRS cerebral con los contenidos arteriales, capilares y venoso de oxígeno en el análisis bivariado, encontrándose para estos pacientes niveles más bajos de estos contenidos como también para el consumo de oxígeno, no se encontró asociación significativa con la saturación arterial ni venosa de oxígeno, parece existir una relación significativa entre los niveles más bajos de NIRS con el resultado neurológico, estos hallazgos sin embargo no fueron significativos en el análisis multivariado.
Resumo:
Os autores apresentam revisão geral da distribuição e metabolização da glicose, com ênfase para os distúrbios que ocorrem no trauma crânio-encefálico, como a hiperglicemia que ocorre na fase aguda. Finalizando, são feitos comentários sobre as possíveis conseqüências desses conhecimentos sobre os procedimentos atuais, que aconselham a restrição na oferta de glicose a pacientes com catabolismo acentuado e que necessitam poupar o contingente de proteína corporal.
Resumo:
Preconditioning-induced ischemic tolerance has been documented in the newborn brain, however, the signaling mechanisms of this preconditioning require further elucidation. The aims of this study were to develop a hypoxic-preconditioning (PC) model of ischemic tolerance in the newborn piglet, which emulates important clinical similarities to human situation of birth asphyxia, and to characterize some of the molecular mechanisms shown to be implicated in PC-induced neuroprotection in rodent models. One day old piglets were subjected to PC (8% O(2)/92% N(2)) for 3 h and 24 h later were exposed to hypoxia-ischemia (HI) produced by a combination of hypoxia (5% FiO(2)) for a period of 30 min and ischemia induced by a period of hypotension (10 min of reduced mean arterial blood pressure; 70% of baseline). Neuropathologic analysis and unbiased stereology, conducted at 24 h, 3 and 7 days of recovery following HI, indicated a substantial reduction in the severity of brain damage in PC piglets compared to non-PC piglets (P<0.05). PC significantly increased the mRNA expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and its target gene, vascular endothelial growth factor (VEGF) at 0 h, 6 h, 24 h, 3 and 7 days of recovery. Immunoblot analysis demonstrated that PC resulted in HIF-1 alpha protein stabilization and accumulation in nuclear extracts of cerebral cortex of newborn piglet brain compared to normoxic controls. Protein levels of VEGF increased in a time-dependent manner in both cortex and hippocampus following PC. Double-immunolabeling indicated that VEGF is mainly expressed in neurons, endothelial cells and astroglia. Our study demonstrates for the first time the protective efficacy of PC against hypoxic-ischemic injury in newborn piglet model, which recapitulates many pathophysiological features of asphyxiated human neonates. Furthermore, as has been shown in rodent models of preconditioning, our results suggest that PC-induced protection in neonatal piglets may involve upregulation of VEGF. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
OBJETIVO: Avaliar a reprodutibilidade de dois modelos experimentais de isquemia e reperfusão cerebral. MÉTODOS: 60 ratos foram distribuídos, aleatoriamente, em três grupos experimentais, com 20 animais cada: I - pinçamento temporário de artéria carótida esquerda; II - cauterização prévia das artérias vertebrais e pinçamento temporário da artéria carótida esquerda; simulado - sem isquemia nem reperfusão. Todos os animais tiveram oclusão definitiva de artéria carótida direita e os três grupos foram subdivididos em dois períodos de reperfusão: A - 60 minutos e B - 120 minutos. Os parâmetros verificados foram: medidas de pressão arterial média sistêmica e fluxo sangüíneo carotídeo; medida de malondialdeído cerebral através do teste TBARS e avaliação histológica do hemisfério cerebral submetido à isquemia e reperfusão. Foi feito também um estudo complementar com angiografia cerebral em 5 animais adicionais. RESULTADOS: Não houve diferenças significativas nas dosagens de malondialdeído cerebral e na freqüência e gravidade das alterações histológicas cerebrais entre os três grupos. Nos grupos GI e GII, a PAM foi significantemente maior no período de isquemia. O fluxo sangüíneo entre os períodos pré e pós-pinçamento aumentou nos grupos IA e IIB, diminuiu no grupo IB e no grupo IIA manteve-se inalterado. As angiografias do estudo complementar mostraram aporte sangüíneo para cérebro através de circulação colateral. CONCLUSÃO: Os modelos de isquemia e reperfusão estudados não demonstraram alterações consistentes de marcadores de lesão cerebral, seja quanto à produção de lipoperóxidos ou de lesões histológicas.
Resumo:
O acidente vascular cerebral (AVC) é a maior causa de mortes e incapacidades neurológicas no Brasil, e mais de 80% deles são decorrentes de evento isquêmico. Os sobreviventes de AVC apresentam uma variedade de déficits motores, cognitivos e sensoriais, que prejudicam suas atividades de vida diária, limitando assim sua independência. Portanto, torna-se cada vez mais necessário elaborar estratégias terapêuticas que promovam a recuperação funcional de pacientes acometidos por AVC. Após isquemia do tecido nervoso, ocorre no meio extracelular a super expressão de moléculas inibitórias a regeneração neuronal e à plasticidade sináptica, como os proteoglicanos de sulfato de condroitina (PGSCs), o principal componente das redes perineuronais (RPNs). A remoção destas moléculas com a ação da enzima condroitinase ABC (ChABC) tem sido usada como estratégia para induzir a plasticidade neuronal. Outro fator que tem sido utilizado para estimular a neuroplasticidade é o exercício físico específico para o membro afetado após AVC. O exercício físico está relacionado à liberação de neurotrofinas, importantes para a regeneração do sistema nervoso. Portanto, a remoção dos PGSCs junto com o exercício físico pode potencializar a indução da plasticidade cerebral e recuperação funcional após lesão isquêmica experimental na área sensório-motora de ratos. Para testar nossa hipótese, utilizamos n=16 ratos (Ratus norvergicus) da linhagem Wistar, divididos nos seguintes grupos experimentais (todos com sobrevida de 21 dias após AVC isquêmico): Grupo Controle ou BSA (Isquemia experimental, implante de Elvax saturado com BSA); Grupo Exercício (Isquemia experimental, implante de Elvax saturado com BSA + exercício físico específico); Grupo ChABC (Isquemia experimental, implante de Elvax saturado com ChABC); e Grupo ChABC + Exercício (Isquemia experimental, implante de Elvax saturado com ChABC + exercício físico específico). A lesão isquêmica foi induzida através de microinjeções do vasoconstritor Endotelina-1 (ET-1) no córtex sensório-motor, na representação da pata anterior. Logo em seguida foi implantado uma microfatia de polímero de Etileno vinil acetato saturado com ChABC (grupos ChABC e ChABC + Exercício) ou BSA (grupos Controle e Exercício). Foram avaliadas a área de lesão e a degradação dos PGSCs, além da recuperação funcional da pata afetada através do teste da exploração vertical e do teste da escada horizontal. Avaliamos a área de lesão (mm2) com auxílio do programa ImageJ (NIH, USA), delimitando a área com palor celular e também marcada com azul de colanil que estava presente na solução de injeção do peptídeo vasoconstritor ET-1 e verificamos que não houve diferença significativa no tamanho da área de lesão entre os grupos Controle (0,48±0,12), Exercício (0,46±0,05), ChABC (0,50±0,18) e ChABC + Exercício (0,55±0,05) (ANOVA, pós-teste de Tukey, ***p<0,001; **<0,01; *p<0,5). Animais que foram submetidos à remoção enzimática dos PGSCs apresentaram imunomarcação para o anticorpo anti-condroitin-4-sulfato (C4S) na área de lesão ao final da sobrevida, não havendo evidencias de degradação de PGSCs nos grupos Controle e Exercício. Verificamos ainda no teste do cilindro que a indução da lesão isquêmica não provocou perda funcional ampla, não alterando o comportamento exploratório, nem a frequência de uso da pata anterior afetada dos animais após a lesão (grupo Controle: pré-lesão ou baseline (0,33±0,10), 3 (0,29±0,17), 7 (0,30±0,10), 14 (0,29±0,16) e 21 (0,27±0,13) dias após a lesão; grupo Exercício: pré-lesão ou baseline (0,30±0,12), 3 (0,32±0,24), 7 (0,19±0,37), 14 (0,31±0,10) e 21 (0,32±0,09) dias após a lesão; grupo ChABC: pré-lesão ou baseline (0,34±0,07), 3 (0,20±0,11), 7 (0,23±0,07), 14 (0,33±0,14) e 21 (0,39±0,16) dias após a lesão; grupo ChABC + Exercício: pré-lesão ou baseline (0,34±0,04), 3 (0,20±0,09), 7 (0,26±0,04), 14 (0,18±0,08) e 21 (0,27±0,04) dias após a lesão) (ANOVA, pós-teste de Tukey, ***p<0,001; **<0,01; *p<0,5). O grupo que teve apenas a remoção dos PGSCs apresentou um melhor desempenho motor no teste da escada horizontal, mantendo sua frequência de acertos quando comparado aos demais grupos, sendo que ao final da sobrevida de 21 dias, os grupos Controle e ChABC + Exercício alcançaram uma recuperação espontânea (equivalente ao teste pré-lesão), se aproximando do grupo ChABC. Apenas o grupo tratado somente com Exercício não alcançou a recuperação espontânea, apresentando um desempenho motor significativamente inferior aos demais grupos em todos os momentos de reavaliação (grupo Controle: pré-lesão ou baseline (7,70±0,54), 3 (5,30±0,71), 7 (5,4±1,14), 14 (5,20±0,37) e 21 (6,70±0,48) dias após a lesão; grupo Exercício: pré-lesão ou baseline (8,40±0,28), 3 (4,30±0,48), 7 (4,75±0,50), 14 (5,35±0,41) e 21 (5,05±0,67) dias após a lesão; grupo ChABC: pré-lesão ou baseline (7,65±0,97), 3 (6,90±0,65), 7 (7,80±0,37), 14 (7,15±0,87) e 21 (7,45±0,32) dias após a lesão; e grupo ChABC + Exercício: pré-lesão ou baseline (8,10±0,22), 3 (3,65±1,48), 7 (4,95±1,06), 14 (7,35±0,37) e 21 (6,70±0,48) dias após a lesão (ANOVA, pós-teste de Tukey, ***p<0,001; **<0,01; *p<0,5). Portanto, a remoção dos PGSCs, o exercício físico forçado precoce e sua associação não influenciaram no tamanho da área de lesão após isquemia focal no córtex sensório-motor. Porém, apenas a remoção dos PGSCs das redes perineuronais melhorou precocemente o desempenho motor do membro afetado após isquemia focal no córtex sensório-motor. Enquanto que a remoção dos PGSCs associada ao exercício físico melhorou o desempenho motor do membro afetado após a lesão, porém essa melhora foi tardia. E o exercício físico aplicado precocemente após isquemia focal no córtex sensório-motor prejudicou o desempenho motor do membro afetado.
Resumo:
Background and Purpose-The pattern of antenatal brain injury varies with gestational age at the time of insult. Deep brain nuclei are often injured at older gestational ages. Having previously shown postnatal hypertonia after preterm fetal rabbit hypoxia-ischemia, the objective of this study was to investigate the causal relationship between the dynamic regional pattern of brain injury on MRI and the evolution of muscle tone in the near-term rabbit fetus. Methods-Serial MRI was performed on New Zealand white rabbit fetuses to determine equipotency of fetal hypoxia-ischemia during uterine ischemia comparing 29 days gestation (E29, 92% gestation) with E22 and E25. E29 postnatal kits at 4, 24, and 72 hours after hypoxia-ischemia underwent T2- and diffusion-weighted imaging. Quantitative assessments of tone were made serially using a torque apparatus in addition to clinical assessments. Results-Based on the brain apparent diffusion coefficient, 32 minutes of uterine ischemia was selected for E29 fetuses. At E30, 58% of the survivors manifested hind limb hypotonia. By E32, 71% of the hypotonic kits developed dystonic hypertonia. Marked and persistent apparent diffusion coefficient reduction in the basal ganglia, thalamus, and brain stem was predictive of these motor deficits. Conclusions-MRI observation of deep brain injury 6 to 24 hours after near-term hypoxia-ischemia predicts dystonic hypertonia postnatally. Torque-displacement measurements indicate that motor deficits in rabbits progressed from initial hypotonia to hypertonia, similar to human cerebral palsy, but in a compressed timeframe. The presence of deep brain injury and quantitative shift from hypo-to hypertonia may identify patients at risk for developing cerebral palsy. (Stroke. 2012;43:2757-2763.)
Resumo:
Brain edema is the main cause of death from brain infarction. The polarized expression of the water channel protein aquaporin-4 (AQP4) on astroglial endfeet surrounding brain microvessels suggests a role in brain water balance. Loss of astrocyte foot process anchoring to the basement membrane (BM) accompanied by the loss of polarized localization of AQP4 to astrocytic endfeet has been shown to be associated with vasogenic/extracellular edema in neuroinflammation. Here, we asked if loss of astrocyte polarity is also observed in cytotoxic/intracellular edema following focal brain ischemia after transient middle cerebral artery occlusion (tMCAO). Upon mild focal brain ischemia, we observed diminished immunostaining for the BM components laminin α4, laminin α2, and the proteoglycan agrin, in the core of the lesion, but not in BMs in the surrounding penumbra. Staining for the astrocyte endfoot anchorage protein β-dystroglycan (DG) was dramatically reduced in both the lesion core and the penumbra, and AQP4 and Kir4.1 showed a loss of polarized localization to astrocytic endfeet. Interestingly, we observed that mice deficient for agrin expression in the brain lack polarized localization of β-DG and AQP4 at astrocytic endfeet and do not develop early cytotoxic/intracellular edema following tMCAO. Taken together, these data indicate that the binding of DG to agrin embedded in the subjacent BM promotes polarized localization of AQP4 to astrocyte endfeet. Reduced DG protein levels and redistribution of AQP4 as observed upon tMCAO might therefore counteract early edema formation and reflect a beneficial mechanism operating in the brain to minimize damage upon ischemia.
Resumo:
The effect of hypoxic preconditioning (PC) on hypoxic-ischemic (HI) injury was explored in glutathione peroxidase (GPx)-overexpressing mice (human GPx-transgenic [hGPx-tg]) mice. Six-day-old hGPx-tg mice and wild-type (Wt) littermates were pre-conditioned with hypoxia for 30 min and subjected to the Vannucci procedure of HI 24 h after the PC stimulus. Histopathological injury was determined 5 d later (P12). Additional animals were killed 2 h or 24 h after HI and ipsilateral cerebral cortices assayed for GPx activity, glutathione (GSH), and hydrogen peroxide (H2O2). In line with previous studies, hypoxic PC reduced injury in the Wt brain. Preconditioned Wt brain had increased GPx activity, but reduced GSH, relative to naive 24 h after HI. Hypoxic PC did not reduce injury to hGPx-tg brain and even reversed the protection previously reported in the hGPx-tg. GPx activity and GSH in hGPx-tg cortices did not change. Without PC, hGPx-tg cortex had less H2O2 accumulation than Wt at both 2 h and 24 h. With PC, H2O2 remained low in hGPx-tg compared with Wt at 2 h, but at 24 h, there was no longer a difference between hGPx-tg and Wt cortices. Accumulation of H2O2 may be a mediator of injury, but may also induce protective mechanisms.