997 resultados para cavity method
Resumo:
The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning.
Resumo:
Background: We aimed to establish values and parameters using multislice reconstruction in axial computerized tomography (CT) in order to quantify the erosion of the glenoid cavity in cases of shoulder instability. Methods: We studied two groups using CT. Group I had normal subjects and Group II had patients with shoulder instability. We measured values of the vertical segment, the superior horizontal, medial and inferior segments, and also calculated the ratio of the horizontal superior and inferior segments of the glenoid cavity in both normal subjects and those with shoulder instability. These variables were recorded during arthroscopy for cases with shoulder instability. Results: The mean values were 40.87 mm, 17.86 mm, 26.50 mm, 22.86 mm and 0.79 for vertical segment, the superior horizontal, medial and inferior segments, and the ratio between horizontal superior and inferior segments of the glenoid cavity respectively, in normal subjects. For subjects with unstable shoulders the mean values were 37.33 mm, 20.83 mm, 23.07 mm and 0.91 respectively. Arthroscopic measurements yielded an inferior segment value of 24.48 mm with a loss of 2.39 mm (17.57%). The ratio between the superior and inferior segments of the glenoid cavity was 0.79. This value can be used as a normative value for evaluating degree of erosion of the anterior border of the glenoid cavity. However, values found using CT should not be used on a comparative basis with values found during arthroscopy. Conclusions: Computerized tomographic measurements of the glenoid cavity yielded reliable values consistent with those in the literature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The capuchin monkey is widespread both north and south of the Legal Amazon and in the Brazilian cerrado. Ten clinically healthy capuchin monkeys were submitted to an anatomical and radiographic study of their thoracic cavities. The radiographic evaluation allowed the description of biometric values associated with the cardiac silhouette and thoracic structures. Application of the VHS (vertebral heart size) method showed positive correlation (P<0.05) with depth of the thoracic cavity, as well as between the body length of vertebrae T 3, T 4, T 5 and T 6 and the cardiac length and width. The lung fields showed a diffuse interstitial pattern, more visible in the caudal lung lobes and a bronchial pattern in the middle and cranial lung lobes. The radiographic examination allowed preliminary inferences to be made concerning the syntopy of the thoracic structures and modifiication of the pulmonary patterns and cardiac anatomy for the capuchin monkey.
Resumo:
Background: We aimed to establish values and parameters using multislice reconstruction in axial computerized tomography (CT) in order to quantify the erosion of the glenoid cavity in cases of shoulder instability. Methods: We studied two groups using CT. Group I had normal subjects and Group II had patients with shoulder instability. We measured values of the vertical segment, the superior horizontal, medial and inferior segments, and also calculated the ratio of the horizontal superior and inferior segments of the glenoid cavity in both normal subjects and those with shoulder instability. These variables were recorded during arthroscopy for cases with shoulder instability. Results The mean values were 40.87 mm, 17.86 mm, 26.50 mm, 22.86 mm and 0.79 for vertical segment, the superior horizontal, medial and inferior segments, and the ratio between horizontal superior and inferior segments of the glenoid cavity respectively, in normal subjects. For subjects with unstable shoulders the mean values were 37.33 mm, 20.83 mm, 23.07 mm and 0.91 respectively. Arthroscopic measurements yielded an inferior segment value of 24.48 mm with a loss of 2.39 mm (17.57%). The ratio between the superior and inferior segments of the glenoid cavity was 0.79. This value can be used as a normative value for evaluating degree of erosion of the anterior border of the glenoid cavity. However, values found using CT should not be used on a comparative basis with values found during arthroscopy. Conclusions: Computerized tomographic measurements of the glenoid cavity yielded reliable values consistent with those in the literature.
Resumo:
This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I13/2→4I15/2 transition (due to Er3+ ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions.According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual microelectronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+-Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition.
Resumo:
Superplastic bulging is the most successful application of superplastic forming (SPF) in industry, but the non-uniform wall thickness distribution of parts formed by it is a common technical problem yet to be overcome. Based on a rigid-viscoplastic finite element program developed by the authors, for simulation of the sheet superplastic forming process combined with the prediction of microstructure variations (such as grain growth and cavity growth), a simple and efficient preform design method is proposed and applied to the design of preform mould for manufacturing parts with uniform wall thickness. Examples of formed parts are presented here to demonstrate that the technology can be used to improve the uniformity of wall thickness to meet practical requirements. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In order to determine the age of adult wild dogs, we compared two methods ( that of Thomson and Rose (TR method) and that of Knowlton and Whittemore (KW method)) of measuring and calculating pulp cavity : tooth width ratios on upper and lower canine teeth from 68 mixed-sex, known-age wild dogs of 9 months to 13 years of age reared at two localities. Although significant relationships ( P = 0.0001) were found between age and pulp cavity ratios by both methods, the TR ratio calculation and measurement showed heteroscedasity in error variance whereas the KW ratios had a more stable error variance and were normally distributed. The KW method also found significant differences between pulp cavity ratios between teeth of the upper and lower jaws ( P < 0.0001) and sex ( P = 0.01) but not geographic origin ( P = 0.1). Regressions and formulae for fitted curves are presented separately for male and female wild dogs. Males show greater variability in pulp cavity decrements with age than do females, suggesting a physiological difference between the sexes. We conclude that the KW method of using pulp cavity as a proportion of tooth width, measured 15 mm from the root tip and averaged over both upper canines, is the more accurate method of estimating the age of adult wild dogs.
Resumo:
We report on the effect of the replacement of the conventional ITO anode with the semitransparent metallic material on the performance of microcavity OLEDs. We performed comprehensive simulations of the emission from microcavity OLEDs consisting of widely used organic materials, N,N′-di(naphthalene-1- yl)-N,N′-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. Silver and LiF/Al were considered as a cathode, while metallic (Au and Ag) anode was used and simulations were performed on devices with both the metallic and conventional ITO anode. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that the metallic anode enhances light output and that optimum emission from a microcavity OLED is achieved when the position of the recombination region is aligned with the antinode of the standing wave inside the cavity. The microcavity OLED devices with Ag/Ag and Ag/Au mirrors were fabricated and characterized. The experimental results have been compared to the simulations and the influence of the different anode, emission region width and position on the performance of microcavity OLEDs was discussed.
Resumo:
We demonstrate a simple lossless method for the implementation of repetition-rate multiplication of a periodic pulse train. As it is showed, a single all-pass optical cavity (APOC) can increase the repetition rate of the output pulse train by factors of 2, 3, and 4. Two different APOC implementations, based on a Gires-Tournois interferometer and an all-pass ring resonator, are proposed and numerically demonstrated.
Resumo:
We propose a simple lossless method for the generation of flat-topped intensity pulses bursts from a single utrashort pulse. We have found optimum solutions corresponding to different numbers of cavities and burst pulses, showing that the proposed all-pass structures of optical cavities, properly designed, can generate close to flat-topped pulse busts.
Resumo:
A low-threshold nanolaser with all three dimensions at the subwavelength scale is proposed and investigated. The nanolaser is constructed based on an asymmetric hybrid plasmonic F-P cavity with Ag-coated end facets. Lasing characteristics are calculated using finite element method at the wavelength of 1550 nm. The results show that owing to the low modal loss, large modal confinement factor of the asymmetric plasmonic cavity structure, in conjunction with the high reflectivity of the Ag reflectors, a minimum threshold gain of 240 cm−1 is predicted. Furthermore, the Purcell factor as large as 2518 is obtained with optimized structure parameters to enhance rates of spontaneous and stimulated emission.