Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results


Autoria(s): Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, Hubertus; Mohn, J.
Data(s)

2016

Resumo

In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called trace gas extractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, µmole mole−1) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on repeated measurements of compressed air during a 2-week intercomparison campaign, the repeatability of the TREX–QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX–QCLAS data and bag/flask sampling–IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. This also displays the potential to improve the interlaboratory compatibility based on the analysis of a reference air sample with accurately determined isotopic composition.

Formato

application/pdf

Identificador

http://boris.unibe.ch/80206/1/eyer16amt.pdf

Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, Hubertus; Mohn, J. (2016). Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results. Atmospheric Measurement Techniques (AMT), 9(1), pp. 263-280. Copernicus Publications 10.5194/amt-9-263-2016 <http://dx.doi.org/10.5194/amt-9-263-2016>

doi:10.7892/boris.80206

info:doi:10.5194/amt-9-263-2016

urn:issn:1867-1381

Idioma(s)

eng

Publicador

Copernicus Publications

Relação

http://boris.unibe.ch/80206/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, Hubertus; Mohn, J. (2016). Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results. Atmospheric Measurement Techniques (AMT), 9(1), pp. 263-280. Copernicus Publications 10.5194/amt-9-263-2016 <http://dx.doi.org/10.5194/amt-9-263-2016>

Palavras-Chave #530 Physics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed