964 resultados para caloric restriction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although restriction enzymes are widely distributed in nature, many bacterial genera are yet to be explored for the presence of this important class of enzymes. We have purified and characterized a new type II restriction endonuclease, OfoI from a nonheterocyst cyanobacterium Oscillatoria foreaui. The recognition sequence has been determined by primer extension analysis. The purified enzyme OfoI recognizes and cleaves the palindromic hexanucleotide 5'-Cdown arrowYCGRG-3', generating 5'-protruding ends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type III restriction-modification (R-M) enzymes need to interact with two separate unmethylated DNA sequences in indirectly repeated, head-to-head orientations for efficient cleavage to occur at a defined location next to only one of the two sites. However, cleavage of sites that are not in head-to-head orientation have been observed to occur under certain reaction conditions in vitro. ATP hydrolysis is required for the long-distance communication between the sites prior to cleavage. Type III R-M enzymes comprise two subunits, Res and Mod that form a homodimeric Mod(2) and a heterotetrameric Res(2)Mod(2) complex. The Mod subunit in M-2 or R2M2 complex recognizes and methylates DNA while the Res subunit in R2M2 complex is responsible for ATP hydrolysis, DNA translocation and cleavage. A vast majority of biochemical studies on Type III R-M enzymes have been undertaken using two closely related enzymes, EcoP1I and EcoP15I. Divergent opinions about how the long-distance interaction between the recognition sites exist and at least three mechanistic models based on 1D- diffusion and/or 3D-DNA looping have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most bacterial genomes harbor restriction-modification systems, encoding a REase and its cognate MTase. On attack by a foreign DNA, the REase recognizes it as nonself and subjects it to restriction. Should REases be highly specific for targeting the invading foreign DNA? It is often considered to be the case. However, when bacteria harboring a promiscuous or high-fidelity variant of the REase were challenged with bacteriophages, fitness was maximal under conditions of catalytic promiscuity. We also delineate possible mechanisms by which the REase recognizes the chromosome as self at the noncanonical sites, thereby preventing lethal dsDNA breaks. This study provides a fundamental understanding of how bacteria exploit an existing defense system to gain fitness advantage during a host-parasite coevolutionary ``arms race.''

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helicobacter pylori is a Gram-negative bacterium that colonizes human stomach and causes gastric inflammation. The species is naturally competent and displays remarkable diversity. The presence of a large number of restriction-modification (R-M) systems in this bacterium creates a barrier against natural transformation by foreign DNA. Yet, mechanisms that protect incoming double-stranded DNA (dsDNA) from restriction enzymes are not well understood. A DNA-binding protein, DNA Processing Protein A (DprA) has been shown to facilitate natural transformation of several Gram-positive and Gram-negative bacteria by protecting incoming single-stranded DNA (ssDNA) and promoting RecA loading on it. However, in this study, we report that H. pylori DprA (HpDprA) binds not only ssDNA but also dsDNA thereby conferring protection to both from various exo-nucleases and Type II restriction enzymes. Here, we observed a stimulatory role of HpDprA in DNA methylation through physical interaction with methyltransferases. Thus, HpDprA displayed dual functional interaction with H. pylori R-M systems by not only inhibiting the restriction enzymes but also stimulating methyltransferases. These results indicate that HpDprA could be one of the factors that modulate the R-M barrier during inter-strain natural transformation in H. pylori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction enzyme KpnI is a HNH superfamily endonuclease requiring divalent metal ions for DNA cleavage but not for binding. The active site of KpnI can accommodate metal ions of different atomic radii for DNA cleavage. Although Mg2+ ion higher than 500 mu M mediates promiscuous activity, Ca2+ suppresses the promiscuity and induces high cleavage fidelity. Here, we report that a conservative mutation of the metal-coordinating residue D148 to Glu results in the elimination of the Ca2+-mediated cleavage but imparting high cleavage fidelity with Mg2+. High cleavage fidelity of the mutant D148E is achieved through better discrimination of the target site at the binding and cleavage steps. Biochemical experiments and molecular dynamics simulations suggest that the mutation inhibits Ca2+-mediated cleavage activity by altering the geometry of the Ca2+-bound HNH active site. Although the D148E mutant reduces the specific activity of the enzyme, we identified a suppressor mutation that increases the turnover rate to restore the specific activity of the high fidelity mutant to the wild-type level. Our results show that active site plasticity in coordinating different metal ions is related to KpnI promiscuous activity, and tinkering the metal ion coordination is a plausible way to reduce promiscuous activity of metalloenzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]This paper deals with the so-called Person Case Constraint (Bonet, 1991), a universal constraint blocking accusative clitics and object agreement morphemes other than third person when a dative is inserted in the same clitic/agreement cluster. The aim of this paper is twofold. First, we argue that the scope of the PCC is considerably broader than assumed in previous work, and that neither its formulation in terms of person (1st/2nd vs. 3rd)-case (accusative vs. dative) restrictions nor its morphological nature are part of the right descriptive generalization.We present evidence (i) that the PCC is triggered by the presence of an animacy feature in the object’s agreement set; (ii) that it is not case dependent, also showing up in languages that lack dative case; and (iii) that it is not morphologically bound. Second, we argue that the PCC, even if it is modified accordingly, still puts together two different properties of the agreement system that should be set apart: (i) a cross linguistic sensitivity of object agreement to animacy and (ii) a similarly widespread restriction on multiple object agreement observed crosslinguistically. These properties lead us to propose a new generalization, the Object Agreement Constraint (OAC): if the verbal complex encodes object agreement, no other argument can be licensed through verbal agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dormancy has been observed in several species of Cyclops. Animals in dormancy are characterised by almost complete inactivity of the main appendages and sluggish intestinal peristalsis. In Cyclops vicinus dormancy can take place in copepod stages III (19%), IV (78%) and V (3%) but one and the same animal only in one developmental stage. The author gives his own results between frequency of dormancy and photoperiod (20 C, 1000 lux). He concludes that dormancy in C. vicinus can be influenced by day length and can be ended prematurely by short day length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval and juvenile rockfishes (Sebastes spp.) are difficult to identify using morphological characters. We developed a key based on sizes of restriction endonuclease fragments of the NADH dehydrogenase-3 and -4 (ND3/ND4) and 12S and 16S ribosomal RNA (12S/16S) mitochondrial regions. The key makes use of variation in the ND3/ND4 region. Restriction endonuclease Dde I variation can corroborate identifications, as can 12S/16S variation. The key, based on 71 species, includes most North American taxa, several Asian species, and Sebastolobus alascanus and Helicolenus hilgendorfi that are closely related to rockfishes. Fifty-eight of 71 rockfish species in our database can be distinguished unequivocally, using one to five restriction enzymes; identities of the remaining species are narrowed to small groups: 1) S. polyspinis, S. crameri, and S. ciliatus or variabilis (the two species could not be distinguished and were considered as a single species) ; 2) S. chlorostictus, S. eos, and S. rosenblatti; 3) S. entomelas and S. mystinus; 4)S. emphaeus, S. variegatus, and S. wilsoni; and 5) S. carnatus and S. chrysomelas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effect of protein restriction with subsequent re-alimentation on nutrient utilization, hematological and biochemical changes of Indian major carp, Rohu (Labeo rohita H.), 150 acclimatized Rohu fingerlings (average 20.74 ± 0.13 g) divided into five experimental groups (30 fingerlings in each groups with three replications with 10 fingerlings in each) for experimental trial of 90 days using completely randomized design. Control group (T sub(CPR)) was fed with feed having 30% crude protein at 3% of body weight for 90 days trial period. Other experimental groups T sub(1PR) was alternatively 3 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(2PR) was alternatively 7 days fed with feed having 20% CP and 30% CP at 3% of body weight, T sub(3PR) was alternatively 15 days fed with feed having 20% CP and 30% CP at 3% of body weight and T sub(4PR) was alternatively 25 days fed with feed having 20% CP and 30% CP at 3% of body weight during 90 days trial period with daily ration in two equal halves at morning and afternoon. It was noticed that retention of different nutrients was almost similar among all treatment groups indicated improvement of digestibility of nutrients might not be the mechanisms for recovery growth in carps. Increased percent feed intake of body weight (hyperphagia) (4.14 ± 0.30 or 4.94 ± 0.46 and 3.33 ± 0.29), improved specific growth rate (1.86 ± 0.09 or 2.26 ± 0.05 and 1.43 ± 0.01), absolute growth rate (1.57 ± 0.08 or 1.84 ± 0.18 and 1.36 ± 0.12), protein efficiency ratio (1.19 ± 0.11 or1.16 ± 0.12 and 1.05 ± 0.09) were the important mechanism showing better performance index (21.60 ± 1.09 or 23.80 ± 0.21 and 19.45 ± 0.37) through which the experimental groups which were protein restricted and re-alimented at 3 or 7 days alternatively during 90 days trial period could able to compensate the growth retardation and to catch up the final body weight of control (128.68 ± 11.53 g/f) but other experimental groups failed to compensate during 90 days trial period. Result of the present study indicated that deprived fish i.e., fish received alternate 3 or 7 days protein restriction and re-alimentation showed recovery growth had still lower values of Hb (10.21 ± 0.02, and 9.88 ± 0.04 g/dl), hematocrit value (30.62 ± 0.05 and 26.64 ± 0.11%), total erythrocytic count (3.40 ± 0.01 and 3.29 ± 0.01 X10super(6) mm³), plasma glucose (126.93 ± 0.20 and 126.67 ± 0.05 mg/dl), total plasma lipid (1.04 ± 0.01 and 1.02 ± 0.01 g/dl) and liver glycogen (290.10 ± 0.80 and 288.99 ± 0.95 mg/kg) in comparison to control (10.56 ± 0.08 g/dl, 31.68 ± 0.24%, 3.52 ± 0.03 X10super(6) mm³, 128.23 ± 0.25 mg/dl, 1.07 ± 0.01g/dl and 292.00 ± 0.23 mg/kg) at the end of 90 days trial but total plasma protein in deprived group was compensated with advancement of trial period. All hematological and biochemical parameters studied were proportionately lowered in the experimental group got higher degree of deprivation. These findings suggested that with the increase of trial length complete compensation of hematological and biochemical profiles of rohu might be achieved. The results indicated that the implementation of alternative 7 days low and high protein diet feeding during aquaculture of carps could make economize the operation through minimizing the feed input cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different forms of Chinese pangolins can be recognized according to the color of their scales, i.e., brown and dusky. We analyzed mitochondrial DNA (mtDNA) purified from the livers of seven dusky and six brown Chinese pangolins from the same locality, using cleavage patterns from 19 restriction enzymes. From the 19 6-bp recognition enzymes used, 51-56 sites were observed. By combining the cleavage patterns for each enzyme, the 13 samples were classified into four restriction types: two in dusky and two in brown Chinese pangolins. The estimated number of nucleotide substitutions per site in dusky and brown types is 0.002, and that between dusky and brown types is 0.012. Divergence between brown and dusky forms began 0.6 Myr ago, provided the mean rate of sequence divergence is 0.02 per Myr in mtDNA. Our results suggest that there is considerable divergence in Chinese pangolins, and brown and dusky Chinese pangolins may be quite different forms or, at least, belong to different maternal groups.