915 resultados para asymptotic optimality


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an asymptotic expansion for the Taylor coe±cients of L(P(z)) where L(z) is analytic in the open unit disc whose Taylor coe±cients vary `smoothly' and P(z) is a probability generating function. We show how this result applies to a variety of problems, amongst them obtaining the asymptotics of Bernoulli transforms and weighted renewal sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0x)∽Aα−1x−α as x→∞ and P(S1≤x)∽Bα−1ρ−1xαρ as x↓0. [Here ρ=P(X1>0) and A and B are known constants.] It is also known that S1 has a continuous density, m say. The main point of this note is to show that m(x)∽Ax−(α+1) as x→∞ and m(x)∽Bxαρ−1 as x↓0. Similar results are obtained for related densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymptotic expressions are derived for the mountain wave drag in flow with constant wind and static stability over a ridge when both rotation and non-hydrostatic effects are important. These expressions, which are much more manageable than the corresponding exact drag expressions (when these do exist) are found to provide accurate approximations to the drag, even when non-hydrostatic and rotation effects are strong, despite having been developed for cases where these effects are weak. The derived expressions are compared with approximations to the drag found previously, and their asymptotic behaviour in various limits is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider second kind integral equations of the form x(s) - (abbreviated x - K x = y ), in which Ω is some unbounded subset of Rn. Let Xp denote the weighted space of functions x continuous on Ω and satisfying x (s) = O(|s|-p ),s → ∞We show that if the kernel k(s,t) decays like |s — t|-q as |s — t| → ∞ for some sufficiently large q (and some other mild conditions on k are satisfied), then K ∈ B(XP) (the set of bounded linear operators on Xp), for 0 ≤ p ≤ q. If also (I - K)-1 ∈ B(X0) then (I - K)-1 ∈ B(XP) for 0 < p < q, and (I- K)-1∈ B(Xq) if further conditions on k hold. Thus, if k(s, t) = O(|s — t|-q). |s — t| → ∞, and y(s)=O(|s|-p), s → ∞, the asymptotic behaviour of the solution x may be estimated as x (s) = O(|s|-r), |s| → ∞, r := min(p, q). The case when k(s,t) = к(s — t), so that the equation is of Wiener-Hopf type, receives especial attention. Conditions, in terms of the symbol of I — K, for I — K to be invertible or Fredholm on Xp are established for certain cases (Ω a half-space or cone). A boundary integral equation, which models three-dimensional acoustic propaga-tion above flat ground, absorbing apart from an infinite rigid strip, illustrates the practical application and sharpness of the above results. This integral equation mod-els, in particular, road traffic noise propagation along an infinite road surface sur-rounded by absorbing ground. We prove that the sound propagating along the rigid road surface eventually decays with distance at the same rate as sound propagating above the absorbing ground.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most widely used updating rule for non-additive probalities is the Dempster-Schafer rule. Schmeidles and Gilboa have developed a model of decision making under uncertainty based on non-additive probabilities, and in their paper “Updating Ambiguos Beliefs” they justify the Dempster-Schafer rule based on a maximum likelihood procedure. This note shows in the context of Schmeidler-Gilboa preferences under uncertainty, that the Dempster-Schafer rule is in general not ex-ante optimal. This contrasts with Brown’s result that Bayes’ rule is ex-ante optimal for standard Savage preferences with additive probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

: In a model of a nancial market with an atomless continuum of assets, we give a precise and rigorous meaning to the intuitive idea of a \well-diversi ed" portfolio and to a notion of \exact arbitrage". We show this notion to be necessary and su cient for an APT pricing formula to hold, to be strictly weaker than the more conventional notion of \asymptotic arbitrage", and to have novel implications for the continuity of the cost functional as well as for various versions of APT asset pricing. We further justify the idealized measure-theoretic setting in terms of a pricing formula based on \essential" risk, one of the three components of a tri-variate decomposition of an asset's rate of return, and based on a speci c index portfolio constructed from endogenously extracted factors and factor loadings. Our choice of factors is also shown to satisfy an optimality property that the rst m factors always provide the best approximation. We illustrate how the concepts and results translate to markets with a large but nite number of assets, and relate to previous work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumption is an important macroeconomic aggregate, being about 70% of GNP. Finding sub-optimal behavior in consumption decisions casts a serious doubt on whether optimizing behavior is applicable on an economy-wide scale, which, in turn, challenge whether it is applicable at all. This paper has several contributions to the literature on consumption optimality. First, we provide a new result on the basic rule-of-thumb regression, showing that it is observational equivalent to the one obtained in a well known optimizing real-business-cycle model. Second, for rule-of-thumb tests based on the Asset-Pricing Equation, we show that the omission of the higher-order term in the log-linear approximation yields inconsistent estimates when lagged observables are used as instruments. However, these are exactly the instruments that have been traditionally used in this literature. Third, we show that nonlinear estimation of a system of N Asset-Pricing Equations can be done efficiently even if the number of asset returns (N) is high vis-a-vis the number of time-series observations (T). We argue that efficiency can be restored by aggregating returns into a single measure that fully captures intertemporal substitution. Indeed, we show that there is no reason why return aggregation cannot be performed in the nonlinear setting of the Pricing Equation, since the latter is a linear function of individual returns. This forms the basis of a new test of rule-of-thumb behavior, which can be viewed as testing for the importance of rule-of-thumb consumers when the optimizing agent holds an equally-weighted portfolio or a weighted portfolio of traded assets. Using our setup, we find no signs of either rule-of-thumb behavior for U.S. consumers or of habit-formation in consumption decisions in econometric tests. Indeed, we show that the simple representative agent model with a CRRA utility is able to explain the time series data on consumption and aggregate returns. There, the intertemporal discount factor is significant and ranges from 0.956 to 0.969 while the relative risk-aversion coefficient is precisely estimated ranging from 0.829 to 1.126. There is no evidence of rejection in over-identifying-restriction tests.