973 resultados para algebra di Lie gruppi risolubili nilpotenti
Resumo:
Il lavoro ha ad oggetto gli strumenti di programmazione e controllo utilizzabili dagli enti locali ai fini della governance sulle proprie aziende di gestione dei servizi pubblici, alla luce delle riforme che hanno interessato sia il settore considerato, sia i sistemi informativo-contabili delle amministrazioni territoriali. Viene effettuata una proposta, anche in base allo studio della Legge, della dottrina economico aziendale e degli esiti di una ricerca che ha coinvolto i comuni capoluogo di Emilia Romagna e Toscana, per identificare un cruscotto informativo unico che coniughi esigenze informative degli enti locali, semplicità di utilizzo e rispetto della normativa attuale.
Resumo:
Il tema dei servizi pubblici locali è sicuramente centrale nell'attuale contesto socio-economico nazionale ed internazionale, in quanto essi hanno un impatto determinante sulle condizioni di vita dei cittadini e sulla competitività dei sistemi economici. In ragione di ciò, negli ultimi anni in Italia numerose riforme si sono susseguite, con lo scopo di individuare l'assetto più efficace ed efficiente per tale settore. Le suddette riforme hanno così ridisegnato il ruolo degli Enti Locali, che saranno sempre meno gestori diretti e sempre più direttori di una multiforme orchestra composta dalle aziende esterne chiamate a fornire in prima persona le prestazioni agli utenti finali. Il presente lavoro si propone di individuare, anche attraverso una ricerca sui Comuni capoluogo di Emilia-Romagna e Toscana, strumenti di programmazione e controllo in ottica di gruppo che consentano agli Enti Locali di svolgere questo nuovo delicato ruolo. Tali strumenti verranno disegnati sulla base delle necessità informative delle amministrazioni indagate e nel rispetto delle più recenti riforme in tema di programmazione, rilevazione, gestione, controllo, valutazione e comunicazione delle performance pubbliche.
Resumo:
The crystal structure of [HgCl2(Pyo)](n) (Pyo = pyridazine, C4H4N2) consists of chloride-bridged strands of octahedrally coordinated mercuric centers, connected by the two neighboring N atoms of pyridazine molecules. All atoms lie in special positions:Hg with site symmetry 2/m and the others on mirror planes.
Resumo:
The crystal structure of [HgBr2(Pyo)](n) (Pyo = pyridazine, C4H4N2) consists of strands of octahedrally coordinated mercuric centers asymmetrically bridged by bromide and connected by the two neighboring N atoms of pyridazine molecules to complete the octahedral coordination of mercury. The Hg atoms lie on inversion centers.
Resumo:
Dans ce travail, nous exploitons des propriétés déjà connues pour les systèmes de poids des représentations afin de les définir pour les orbites des groupes de Weyl des algèbres de Lie simples, traitées individuellement, et nous étendons certaines de ces propriétés aux orbites des groupes de Coxeter non cristallographiques. D'abord, nous considérons les points d'une orbite d'un groupe de Coxeter fini G comme les sommets d'un polytope (G-polytope) centré à l'origine d'un espace euclidien réel à n dimensions. Nous introduisons les produits et les puissances symétrisées de G-polytopes et nous en décrivons la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algèbres de Lie simples de tous types sont réduites en l'union d'orbites des groupes de Weyl des sous-algèbres réductives maximales de l'algèbre. Nous listons les matrices qui transforment les points des orbites de l'algèbre en des points des orbites des sous-algèbres pour tous les cas n<=8 ainsi que pour plusieurs séries infinies des paires d'algèbre-sous-algèbre. De nombreux exemples de règles de branchement sont présentés. Finalement, nous fournissons une nouvelle description, uniforme et complète, des centralisateurs des sous-groupes réguliers maximaux des groupes de Lie simples de tous types et de tous rangs. Nous présentons des formules explicites pour l'action de tels centralisateurs sur les représentations irréductibles des algèbres de Lie simples et montrons qu'elles peuvent être utilisées dans le calcul des règles de branchement impliquant ces sous-algèbres.
Resumo:
The title compound,{(C2H10N2)(2)[Mn(PO4)(2)]}(n), contains anionic square-twisted chains of formula [Mn(PO4)(2)](4-) constructed from corner-sharing four-membered rings of alternating MnO4 and PO4 units. The Mn and P atoms have distorted tetrahedral coordination and the Mn atom lies on a twofold axis. The linear manganese-phosphate chains are held together by hydrogen-bonding interactions involving the framework O atoms and the H atoms of the ethane-1,2-diammonium cations, which lie in the interchain spaces.
Resumo:
This paper considers left-invariant control systems defined on the Lie groups SU(2) and SO(3). Such systems have a number of applications in both classical and quantum control problems. The purpose of this paper is two-fold. Firstly, the optimal control problem for a system varying on these Lie Groups, with cost that is quadratic in control is lifted to their Hamiltonian vector fields through the Maximum principle of optimal control and explicitly solved. Secondly, the control systems are integrated down to the level of the group to give the solutions for the optimal paths corresponding to the optimal controls. In addition it is shown here that integrating these equations on the Lie algebra su(2) gives simpler solutions than when these are integrated on the Lie algebra so(3).
Resumo:
This paper uses the structure of the Lie algebras to identify the Casimir invariant functions and Lax operators for matrix Lie groups. A novel mapping is found from the cotangent space to the dual Lie algebra which enables Lax operators to be found. The coordinate equations of motion are given in terms of the structure constants and the Hamiltonian.
Resumo:
Let * be an involution of a group G extended linearly to the group algebra KG. We prove that if G contains no 2-elements and K is a field of characteristic p, 0 2, then the *-symmetric elements of KG are Lie nilpotent (Lie n-Engel) if and only if KG is Lie nilpotent (Lie n-Engel). (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.
Resumo:
Let F-sigma(lambda)vertical bar G vertical bar be a crossed product of a group G and the field F. We study the Lie properties of F-sigma(lambda)vertical bar G vertical bar in order to obtain a characterization of those crossed products which are upper (lower) Lie nilpotent and Lie (n, m)-Engel. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let * be an involution of a group algebra FG induced by an involution of the group G. For char F not equal 2, we classify the torsion groups G with no elements of order 2 whose Lie algebra of *-skew elements is nilpotent.
Resumo:
We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super-affine Lie algebras as expected, but, in general, them are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an affine Lie algebra, due to the mixing between bosonic and fermionic fields; the purely fermionic sector displays an affine Lie algebra as well.
Resumo:
The construction of a q-deformed N = 2 superconformal algebra is proposed in terms of level-1 currents of the U-q(<(su)over cap>(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed energy-momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U-q(<(su)over cap>(N + 1)) is also proposed.