992 resultados para acoustic backscatter intensity
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
Resumo:
Automatic spoken Language Identi¯cation (LID) is the process of identifying the language spoken within an utterance. The challenge that this task presents is that no prior information is available indicating the content of the utterance or the identity of the speaker. The trend of globalization and the pervasive popularity of the Internet will amplify the need for the capabilities spoken language identi¯ca- tion systems provide. A prominent application arises in call centers dealing with speakers speaking di®erent languages. Another important application is to index or search huge speech data archives and corpora that contain multiple languages. The aim of this research is to develop techniques targeted at producing a fast and more accurate automatic spoken LID system compared to the previous National Institute of Standards and Technology (NIST) Language Recognition Evaluation. Acoustic and phonetic speech information are targeted as the most suitable fea- tures for representing the characteristics of a language. To model the acoustic speech features a Gaussian Mixture Model based approach is employed. Pho- netic speech information is extracted using existing speech recognition technol- ogy. Various techniques to improve LID accuracy are also studied. One approach examined is the employment of Vocal Tract Length Normalization to reduce the speech variation caused by di®erent speakers. A linear data fusion technique is adopted to combine the various aspects of information extracted from speech. As a result of this research, a LID system was implemented and presented for evaluation in the 2003 Language Recognition Evaluation conducted by the NIST.
Identification of acoustic emission wave modes for accurate source location in plate-like structures
Resumo:
Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.
Resumo:
Knowledge of the accuracy of dose calculations in intensity-modulated radiotherapy of the head and neck is essential for clinical confidence in these highly conformal treatments. High dose gradients are frequently placed very close to critical structures, such as the spinal cord, and good coverage of complex shaped nodal target volumes is important for long term-local control. A phantom study is presented comparing the performance of standard clinical pencil-beam and collapsed-cone dose algorithms to Monte Carlo calculation and three-dimensional gel dosimetry measurement. All calculations and measurements are normalized to the median dose in the primary planning target volume, making this a purely relative study. The phantom simulates tissue, air and bone for a typical neck section and is treated using an inverse-planned 5-field IMRT treatment, similar in character to clinically used class solutions. Results indicate that the pencil-beam algorithm fails to correctly model the relative dose distribution surrounding the air cavity, leading to an overestimate of the target coverage. The collapsed-cone and Monte Carlo results are very similar, indicating that the clinical collapsed-cone algorithm is perfectly sufficient for routine clinical use. The gel measurement shows generally good agreement with the collapsed-cone and Monte Carlo calculated dose, particularly in the spinal cord dose and nodal target coverage, thus giving greater confidence in the use of this class solution.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.
Resumo:
This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.
Resumo:
The relationship between participation in civic and political activities and membership of voluntary associations is now well established. What is less clear is the relative impacts of how much time people spend on group activities (associational intensity), and the number and type of groups that individuals are involved with (associational scope). Does it matter in terms of civic engagement, for example, whether one is a member of a quilting-circle or trade union? Does it matter whether association ‘membership’ is simply an annual payment or a major commitment of time and energy? In this article, we use a large survey to explore these questions empirically by focusing on the membership patterns and civic engagement practices of 4,001 citizens drawn from eight suburbs across Greater Melbourne, Australia. Our findings indicate that, while associational intensity is positively related to civic engagement, associational scope (the number of group memberships per person), is a more influential determinant of the level of civic and political participation. The results also suggest that while all forms of associationalism are important in terms of fostering greater levels of civic activity, not all forms have the same impact.
Resumo:
This paper examines the role of the Internet in international marketing growth. Evidence of a positive relationship between e-mail, website usage, online marketing and advertising with international market growth was found, in terms of increased sales from new customers in new countries, new customers in existing countries, and existing customers.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
Bridges are an important part of a nation’s infrastructure and reliable monitoring methods are necessary to ensure their safety and efficiency. Most bridges in use today were built decades ago and are now subjected to changes in load patterns that can cause localized distress, which can result in bridge failure if not corrected. Early detection of damage helps in prolonging lives of bridges and preventing catastrophic failures. This paper briefly reviews the various technologies currently used in health monitoring of bridge structures and in particular discusses the application and challenges of acoustic emission (AE) technology. Some of the results from laboratory experiments on a bridge model are also presented. The main objectives of these experiments are source localisation and assessment. The findings of the study can be expected to enhance the knowledge of acoustic emission process and thereby aid in the development of an effective bridge structure diagnostics system.
Resumo:
Introduction: There are many low intensity (LI) cognitive behavoural therapy (CBT) solutions to the problem of limited service access. In this chapter, we aim to discuss a relatively low-technology approach to access using standard postal services-CBT by mail, or M-CBT. Bibliotherapies including M-CBT teach key concepts and self-management techniques, together with screening tools and forms to structure home practice. M-CBT differs from other bibliotherapies by segmenting interventions and mailing them at regular intervals. Most involve participants returning copies of monitoring forms or completed handouts. Therapist feedback is provided, often in personal letters that accompany the printed materials. Participants may also be given access to telephone or email support. ----- ----- M-CBT clearly fulfills criteria for an LI CBT (see Bennett-Levy et al., Chapter 1, for a definition of LI interventions). Once written, they involve little therapist time and rely heavily on self-management. However, content and overall treatment duration need not be compromised. Long-term interventions with multiple components can be delivered via this method, provided their content can be communicated in letters and engagement is maintained.
Resumo:
In a previous chapter (Dean and Kavanagh, Chapter 37), the authors made a case for applying low intensity (LI) cognitive behaviour therapy (CBT) to people with serious mental illness (SMI). As in other populations, LI CBT interventions typically deal with circumscribed problems or behaviours. LI CBT retains an emphasis on self-management, has restricted content and segment length, and does not necessarily require extensive CBT training. In applying these interventions to SMI, adjustments may be needed to address cognitive and symptomatic difficulties often faced by these groups. What may take a single session in a less affected population may require several sessions or a thematic application of the strategy within case management. In some cases, the LI CBT may begin to appear more like a high-intensity (HI) intervention, albeit simple and with many LI CBT characteristics still retained. So, if goal setting were introduced in one or two sessions, it could clearly be seen as an LI intervention. When applied to several different situations and across many sessions, it may be indistinguishable from a simple HI treatment, even if it retains the same format and is effectively applied by a practitioner with limited CBT training. ----- ----- In some ways, LI CBT should be well suited to case management of patients with SMI. treating staff typically have heavy workloads, and find it difficult to apply time-consuming treatments (Singh et al. 2003). LI CBT may allow provision of support to greater numbers of service users, and allow staff to spend more time on those who need intensive and sustained support. However, the introduction of any change in practice has to address significant challenges, and LI CBT is no exception. ----- ----- Many of the issues that we face in applying LI CBT to routine case management in a mnetal health service and their potential solutions are essentially the same as in a range of other problem domains (Turner and Sanders 2006)- and, indeed, are similar to those in any adoption of innovation (Rogers 2003). Over the last 20 years, several commentators have described barriers to implementing evidence-based innovations in mental health services (Corrigan et al. 1992; Deane et al. 2006; Kavanagh et al. 1993). The aim of the current chapter is to present a cognitive behavioural conceptualisation of problems and potential solutions for dissemination of LI CBT.
Resumo:
Many people with severe mental illness (SMI) such as schizophrenia, whose psychotic symptoms are effectively managed, continue to experience significant functional problems. This chapter argues that low intensity (LI) cognitive behaviour therapy (CBT; e.g. for depression, anxiety, or other issues) is applicable to these clients, and that LI CBT can be consistent with long-term case management. However, adjustments to LI CBT strategies are often necessary and boundaries between LI CBT and high intensity (HI) CBT (with more extensive practitioner contact and complexity) may become blurred. Our focus is on LI CBT's self-management emphasis, its restricted content and segment length, and potential use after limited training. In addition to exploring these issues, it draws on the authors' Collaborative Recovery (CR; Oades et al. 2005) and 'Start Over and Survive' programs (Kavanagh et al. 2004) as examples. ----- ----- Evidence for the effectiveness of LI CBT with severe mental illness is often embedded within multicomponent programs. For example, goal setting and therapeutic homework are common components of such programs, but they can also be used as discrete LI CBT interventions. A review of 40 randomised controlled trials involving recipients with schizophrenia or other sever mental illnesses has identified key components of illness management programs (Mueser et al. 2002). However, it is relatively rare for specific components of these complex interventions to be assessed in isolation. Given these constraints, the evidence for specific LI CBT interventions with severe mental ilnness is relatively limited.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
This technical report is concerned with one aspect of environmental monitoring—the detection and analysis of acoustic events in sound recordings of the environment. Sound recordings offer ecologists the advantage of cheaper and increased sampling but make available so much data that automated analysis becomes essential. The report describes a number of tools for automated analysis of recordings, including noise removal from spectrograms, acoustic event detection, event pattern recognition, spectral peak tracking, syntactic pattern recognition applied to call syllables, and oscillation detection. These algorithms are applied to a number of animal call recognition tasks, chosen because they illustrate quite different modes of analysis: (1) the detection of diffuse events caused by wind and rain, which are frequent contaminants of recordings of the terrestrial environment; (2) the detection of bird and calls; and (3) the preparation of acoustic maps for whole ecosystem analysis. This last task utilises the temporal distribution of events over a daily, monthly or yearly cycle.