873 resultados para Zinc nanostructures
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.
Resumo:
The formation of vertically aligned single-crystalline silicon nanostructures via "self-organized" maskless etching in Ar+ H 2 plasmas is studied. The shape and aspect ratio can be effectively controlled by the reactive plasma composition. In the optimum parameter space, single-crystalline pyramid-like nanostructures are produced; otherwise, nanocones and nanodots are formed. This generic nanostructure formation approach does not involve any external material deposition. It is based on a concurrent sputtering, etching, hydrogen termination, and atom/radical redeposition and can be applied to other nanomaterials.
Resumo:
In this paper, we report on the fabrication of Mo-oxide nanostructures and nanoarchitectures using an atmospheric-microplasma (AMP) system. This AMP system shows a high degree of flexibility and is capable of producing several different nanostructures and nanoarchitectures by varying the process parameters. The low-cost and simplicity of the process are important characteristics for nanomanufacturing, and AMPs offer such advantages. In addition, AMPs have shown the ability of promoting self-organization of nanostructures. © 2009 IEEE.
Inductively coupled Ar/CH₄/H₂plasmas for low-temperature deposition of ordered carbon nanostructures
Resumo:
The study of inductively coupled Ar/CH 4/H 2 plasmas in the plasma enhanced chemical vapor deposition (PECVD) of self-assembled carbon nanostructures (CN) was presented. A spatially averaged (global) discharge model was developed to study the densities and fluxes of the radical neutrals and charged species, the effective electron temperature, and methane conversion factors under various conditions. It was found that the deposited cation fluxes in the PECVD of CNs generally exceed those of the radical neutrals. The agreement with the optical emission spectroscopy (OES) and quadrupole mass spectrometry (QMS) was also derived through numerical results.
Resumo:
The results of studies on the growth of high-aspect nanostructures in low-temperature non-equilibrium plasmas of reactive gas mixtures with or without hydrogen are presented. The results suggest that the hydrogen in the reactive plasma strongly affects the length of the nanostructures. This phenomenon is explained in terms of selective hydrogen passivation of the lateral and top surfaces of the surface-supported nanostructures. The theoretical model describes the effect of the atomic hydrogen passivation on the nanostructure shape and predicts the critical hydrogen coverage of the lateral surfaces necessary to achieve the nanostructure growth with the pre-determined shape. Our results demonstrate that the use of a strongly non-equilibrium plasma is very effective in significantly improving the shape control of quasi-one-dimensional single-crystalline nanostructures.
Resumo:
Luminescent ZnO nanoparticles have been synthesized on silicon and quartz substrates under extremely non-equilibrium conditions of energetic ion condensation during the post-focus phase in a dense plasma focus (DPF) device. Ar+, O+, Zn+ and ZnO+ ions are generated as a result of interaction of hot and dense argon plasma focus with the surfaces of ZnO pellets placed at the anode. It is found that the sizes, structural and photoluminescence (PL) properties of the ZnO nanoparticles appear to be quite different on Si(1 0 0) and quartz substrates. The results of x-ray diffractometry and atomic force microscopy show that the ZnO nanoparticles are crystalline and range in size from 5-7 nm on Si(1 0 0) substrates to 10-38 nm on quartz substrates. Room-temperature PL studies reveal strong peaks related to excitonic bands and defects for the ZnO nanoparticles deposited on Si (1 0 0), whereas the excitonic bands are not excited in the quartz substrate case. Raman studies indicate the presence of E2 (high) mode for ZnO nanoparticles deposited on Si(1 0 0).
Resumo:
An innovative approach to fabricate tailored Mo-oxide nanostructures and composite nanoarchitectures using atmospheric microplasmas sustained in a gap between a Mo wire and a Si substrate is reported. It is shown that at smaller gap distances spherical nanoparticles are produced whereas sheet-like structures emerge when the gap is increased. When the wire is consumed continuously, it is possible to synthesize complex nanoarchitectures made of nanoparticles decorated with nanosheets. These processes can be applied for other metal and metal oxide materials and suggest a way to improve control and predictability, common problems in high-yield nanofabrication.
Resumo:
A custom-designed inductively coupled plasma (ICP)-assisted radio-frequency magnetron sputtering deposition system has been employed to synthesize aluminium-doped zinc oxide (ZnO:Al) nanofilms on glass substrates at room temperature. The effects of film thickness and ZnO target (partially covered by Al chips) power on the structural, electrical and optical properties of the ZnO:Al nanofilms are studied. A high growth rate (∼41 nm/min), low electrical sheet resistance (as low as 30 Ω/□) and high optical transparency (>80%) over the visible spectrum has been achieved at a film thickness of ∼615 nm and ZnO target power of 150 W. The synthesis of ZnO:Al nanofilms at room temperature and with high growth rates is attributed to the unique features of the ICP-assisted radio-frequency magnetron sputtering deposition approach. The results are relevant to the development of photovoltaic thin-film solar cells and flat panel displays.
Resumo:
A complex multi-scale model and numerical simulations are used to demonstrate, by simulating the development of patterns of nanotips, nanowalls, nanoislands and nanovoids of a characteristic size of 5-100 nm, a greater degree of determinism in the formation of various nanostructures by using the low-density, low-temperature plasma-based processes. It is shown that in the plasma, in contrast to the neutral gas-based processes, one can synthesize nanostructures of various dimensionalities and shapes with a larger surface density, desired geometrical parameters and narrower size distribution functions. This effect is mainly attributed to strong ion focusing by irregular electric fields in the nanopatterns, which effectively redistributes the influxes of plasma-generated building units and thus provides a selective control of their delivery to the growing nanostructures.
Resumo:
An innovative approach to precise tailoring of surface density, shapes, and sizes of single-crystalline α-Fe 2O 3 nanowires and nanobelts by controlling interactions of reactive oxygen plasma-generated species with the Fe surface is proposed. This strongly nonequilibrium, rapid, almost incubation-free, high-rate growth directly from the solid-solid interface can also be applied to other oxide materials and is based on deterministic control of the density of oxygen species and the surface conditions, which determine the nanostructure nucleation and growth.
Resumo:
Plasma-assisted synthesis of nanostructures is one of the most precise and effective approaches used in nanodevice fabrication. Here we report on the innovative approach of synthesizing nanostructured cadmium oxide films on Cd substrates using a reactive oxygen plasma-based process. Under certain conditions, the surface morphology features arrays of crystalline CdO nano/micropyramids. These nanostructures grow via unconventional plasma-assisted oxidation of a cadmium foil exposed to inductively coupled plasmas with a narrow range of process parameters. The growth of the CdO pyramidal nanostructures takes place in the solid-liquid-solid phase, with the rates determined by the interaction of plasma-produced oxygen atoms and ions with the surface. It is shown that the size of the pyramidal structures can be effectively controlled by the fluxes of oxygen atoms and ions impinging on the cadmium surface. The unique role of the reactive plasma environment in the controlled synthesis of CdO nanopyramidal structures is discussed as well.
Resumo:
Recently, a variety high-aspect-ratio nanostructures have been grown and profiled for various applications ranging from field emission transistors to gene/drug delivery devices. However, fabricating and processing arrays of these structures and determining how changing certain physical parameters affects the final outcome is quite challenging. We have developed several modules that can be used to simulate the processes of various physical vapour deposition systems from precursor interaction in the gas phase to gas-surface interactions and surface processes. In this paper, multi-scale hybrid numerical simulations are used to study how low-temperature non-equilibrium plasmas can be employed in the processing of high-aspect-ratio structures such that the resulting nanostructures have properties suitable for their eventual device application. We show that whilst using plasma techniques is beneficial in many nanofabrication processes, it is especially useful in making dense arrays of high-aspect-ratio nanostructures.
Resumo:
The results of 1D simulation of nanoparticle dynamics in the areas adjacent to nanostructured carbon-based films exposed to chemically active complex plasma of CH4 + H2 + Ar gas mixtures are presented. The nanoparticle-loaded near-substrate (including sheath and presheath) areas of a low-frequency (0.5 MHz) inductively coupled plasma facility for the PECVD growth of the ordered carbon-based nanotip structures are considered. The conditions allowing one to predict the size of particles that can pass through the plasma sheath and softly land onto the surface are formulated. The possibility of soft nano-cluster deposition without any additional acceleration common for some existing nano-cluster deposition schemes is demonstrated. The effect of the substrate heating power and the average atomic mass of neutral species is studied numerically and verified experimentally.
Resumo:
Different aspects of the plasma-enhanced chemical vapor deposition of various carbon nanostructures in the ionized gas phase of high-density, low-temperature reactive plasmas of Ar+H2+CH4 gas mixtures are studied. The growth techniques, surface morphologies, densities and fluxes of major reactive species in the discharge, and effects of the transport of the plasma-grown nanoparticles through the near-substrate plasma sheath are examined. Possible growth precursors of the carbon nanostructures are also discussed. In particular, the experimental and numerical results indicate that it is likely that the aligned carbon nanotip structures are predominantly grown by the molecular and radical units, whereas the plasma-grown nanoparticles are crucial components of polymorphous carbon films.
Resumo:
Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.