969 resultados para ZERO-TEMPERATURE DYNAMICS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Thomas-Fermi model, calculations are presented for nuclei beyond the nuclear drip line at zero temperature. These nuclei are in equilibrium by the presence of an external gas, as may be envisaged in the astrophysical scenario. We find that there is a limiting asymmetry beyond which these nuclei can no longer be made stable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The antikaon optical potential in hot and dense nuclear matter is studied within the framework of a coupled-channel self-consistent calculation taking, as bare meson-baryon interaction, the meson-exchange potential of the Jlich group. Typical conditions found in heavy-ion collisions at GSI are explored. As in the case of zero temperature, the angular momentum components larger than L=0 contribute significantly to the finite temperature antikaon optical potential at finite momentum. It is found that the particular treatment of the medium effects has a strong influence on the behavior of the antikaon potential with temperature. Our self-consistent model, in which antikaons and pions are dressed in the medium, gives a moderately temperature dependent antikaon potential which remains attractive at GSI temperatures, contrary to what one finds if only nuclear Pauli blocking effects are included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seeds of carrot, groundnut, lettuce, oilseed rape and onion were stored hermetically in laminated aluminium foil packets in four environments (dry or ultra-dry moisture contents combined factorially with temperatures of 20 degrees C or -20 degrees C), replicated at several sites. After ten years' hermetic storage, seed moisture content, equilibrium relative humidity, viability (assessed by ability to germinate normally in standard germination tests) and vigour were determined. After a decade, the change in seed moisture content of samples stored at -20 degrees C was small or nil. Except for groundnut and lettuce (where loss in viability was about 8 and 3%, respectively), no loss in viability was detected after 10 years' hermetic storage at -20 degrees C. In all cases, there was no difference in seed survival between moisture contents at this temperature (P > 0.25). Comparison of seed vigour (root length and rate of germination) also confirmed that drying to moisture contents in equilibrium with 10-12% r.h. had no detrimental effect to longevity when stored at -20 degrees C: the only significant (P < 0.05) differences detected were slightly greater root lengths for ultra-dry storage of four of the six seed lots. Seed moisture content had increased after a decade at 20 degrees C (generally to the level in equilibrium with ambient relative humidity). Hence, sub-zero temperature storage helped maintain the long-term integrity of the laminated aluminium foil packets, as well as that of the seeds within.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study strongly attractive fermions in an optical lattice superimposed by a trapping potential. We calculate the densities of fermions and condensed bound molecules at zero temperature. There is a competition between dissociated fermions and molecules leading to a reduction of the density of fermions at the trap center. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The third law of thermodynamics is formulated precisely: all points of the state space of zero temperature I""(0) are physically adiabatically inaccessible from the state space of a simple system. In addition to implying the unattainability of absolute zero in finite time (or ""by a finite number of operations""), it admits as corollary, under a continuity assumption, that all points of I""(0) are adiabatically equivalent. We argue that the third law is universally valid for all macroscopic systems which obey the laws of quantum mechanics and/or quantum field theory. We also briefly discuss why a precise formulation of the third law for black holes remains an open problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a nestedness index that measures the nestedness pattern of bipartite networks, a problem that arises in theoretical ecology. Our measure is derived using the sum of distances of the occupied elements in the adjacency matrix of the network. This index quantifies directly the deviation of a given matrix from the nested pattern. In the most simple case the distance of the matrix element ai,j is di,j = i+j, the Manhattan distance. A generic distance is obtained as di,j = (i¬ + j¬)1/¬. The nestedness índex is defined by = 1 − where is the temperature of the matrix. We construct the temperature index using two benchmarks: the distance of the complete nested matrix that corresponds to zero temperature and the distance of the average random matrix that is defined as temperature one. We discuss an important feature of the problem: matrix occupancy. We address this question using a metric index ¬ that adjusts for matrix occupancy

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider here a Coulomb gauge quark model which includes an explicit construct for a nontrivial vacuum structure in QCD at finite density. Non-perturbative renormalization of ultraviolet diverges is performed by adding counterterms. The equation of state for u and d quark matter at zero temperature is calculated in the Hartree-Fock approximation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solutions of a renormalized BCS model are studied in two space dimensions for s, p and d waves for finite-range separable potentials. The gap parameter, the critical temperature T-c, the coherence length xi and the jump in specific heat at T-c as a function of the zero-temperature condensation energy exhibit universal scalings. In the weak-coupling limit, the present model yields a small xi and large T-c, appropriate for high-T-c cuprates. The specific heat, penetration depth and thermal conductivity as functions of temperature show universal scaling for p and d waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the complete numerical solution of a time-dependent three-dimensional rnean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293, 843 (2001)] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93, 120401 (2004)] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)