983 resultados para X-linked inheritance
Resumo:
BACKGROUND: Rett syndrome (RS) is a severe neurodevelopmental X-linked dominant disorder caused by mutations in the MECP2 gene. PURPOSE: To search for point mutations on the MECP2 gene and to establish a correlation between the main point mutations found and the phenotype. METHOD: Clinical evaluation of 105 patients, following a standard protocol. Detection of point mutations on the MECP2 gene was performed on peripheral blood DNA by sequencing the coding region of the gene. RESULTS: Classical RS was seen in 68% of the patients. Pathogenic point mutations were found in 64.1% of all patients and in 70.42% of those with the classical phenotype. Four new sequence variations were found, and their nature suggests patogenicity. Genotype-phenotype correlations were performed. CONCLUSION: Detailed clinical descriptions and identification of the underlying genetic alterations of this Brazilian RS population add to our knowledge of genotype/phenotype correlations, guiding the implementation of mutation searching programs.
Resumo:
In early development, female embryos (XX) produce twice the transcripts of X-linked genes compared with male embryos (XY). During the course of development, inactivation of the X chromosome equilibrates gene dosage, making the development of female embryos viable. Moreover, the biotechnologies used for producing embryos in vitro seem to work better with male embryos, making it easier for them to reach the blastocyst stage and allow for complete gestation. We investigated the expression of three X-linked genes that are involved in development, XIST, G6PD, and HPRT, and of the transcript interferon-tau, in male and female bovine blastocysts produced by nuclear transfer (NT) and by in vitro fertilization (IVF). Oocytes that had been matured in vitro were enucleated and reconstructed with somatic cells from adult animals at 18 h post-maturation. After fusion (two pulses of 2.25 kv/cm) and chemical activation (5.0 mu M ionomycin for 5 min and 2.0 mM 6-DMAP for 3 h), the oocytesomatic cell units were cultivated in CR2 with a monolayer of granulosa cells at 38.8 degrees C, in a humidified 5% CO(2) atmosphere. IVF embryos were inseminated, after centrifugation in a Percoll gradient, with 2 x 10(6) sperm/mL TALP medium supplemented with BSA and PHE and cultivated under the same conditions as the cloned embryos. We used real-time PCR to analyze the gene expression of individual blastocysts compared to expression of the housekeeping gene, GAPDH. The gene XIST was expressed in female embryos and not in male embryos produced by IVF, though it was expressed at low levels in male embryos produced by NT. Unlike previous reports, we found lower levels of the transcript of G6PD in females than in males, suggesting double silencing or other mechanisms of control of this gene. Female embryos produced by IVF expressed the HPRT gene at a higher level than female embryos produced by NT, suggesting that gene silencing proceeds faster in NT-produced female embryos due to ""inactivation memory"" from the nucleus donor. In conclusion, male and female embryos express different levels of X-chromosome genes and failures of these genes that are essential for development could reduce the viability of females. Nuclear transfer can modify this relation, possibly due to epigenetic memory, leading to frequent failures in nuclear reprogramming.
Resumo:
Background information. DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4,6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.
Resumo:
Phenylalanine hydroxylase (PAH) is the enzyme that converts phenylalanine to tyrosine as a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. Over 300 mutations have been identified in the gene encoding PAH that result in a deficient enzyme activity and lead to the disorders hyperphenylalaninaemia and phenylketonuria. The determination of the crystal structure of PAH now allows the determination of the structural basis of mutations resulting in PAH deficiency. We present an analysis of the structural basis of 120 mutations with a 'classified' biochemical phenotype and/or available in vitro expression data. We find that the mutations can be grouped into five structural categories, based on the distinct expected structural and functional effects of the mutations in each category. Missense mutations and small amino acid deletions are found in three categories:'active site mutations', 'dimer interface mutations', and 'domain structure mutations'. Nonsense mutations and splicing mutations form the category of 'proteins with truncations and large deletions'. The final category, 'fusion proteins', is caused by frameshift mutations. We show that the structural information helps formulate some rules that will help predict the likely effects of unclassified and newly discovered mutations: proteins with truncations and large deletions, fusion proteins and active site mutations generally cause severe phenotypes; domain structure mutations and dimer interface mutations spread over a range of phenotypes, but domain structure mutations in the catalytic domain are more likely to be severe than domain structure mutations in the regulatory domain or dimer interface mutations.
Resumo:
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.
Resumo:
Two families, originally diagnosed as having nonsyndromic X-linked mental retardation (NSXLMR), were reviewed when it was shown that they had a 24-bp duplication (428-45 1dup(24bp)) in the ARX gene [Stromme et al., 2002: Nat Genet 30:441-445]. This same duplication had also been found in three other families: one with X-linked infantile spasms and hypsarrhythmia (X-linked West syndrome, MIM 308350) and two with XLMR and dystonic movements of the hands (Partington syndrome, MIM 309510). On review, manifestations of both West and Partington syndromes were found in some individuals from both families. In addition, it was found that one individual had autism and two had autistic behavior, one of whom had epilepsy. The degree of mental retardation ranged from mild to severe. A GCG trinucleotide expansion (GCG)10+7 and a deletion of 1,517 by in the ARX gene have also been found in association with the West syndrome, and a missense mutation (1058C >T) in a family with a newly recognized form of myoclonic epilepsy, severe mental retardation, and spastic paraplegia [Scheffer et al., 2002: Neurology, in press]. Evidently all these disorders are expressions of mutations in the same gene. It remains to be seen what proportions of patients with infantile spasms, focal dystonia, autism, epilepsy, and nonsyndromic mental retardation are accounted for by mutations in the ARX gene. (C) 2002 Wiley-Liss, Inc.
Resumo:
We have measured nucleotide variation in the CLOCK/CYCLE heterodimer inhibition domain (CCID) of the clock X-linked gene period in seven species belonging to the Drosophila buzzatii cluster, namely D. buzzatii, Drosophila koepferae, Drosophila antonietae, Drosophila serido, Drosophila gouveai, Drosophila seriema and Drosophila borborema. We detected that the purifying selection is the main force driving the sequence evolution in period, in agreement with the important role of CCID in clock machinery. Our survey revealed that period provides valuable phylogenetic information that allowed to resolve phylogenetic relationships among D. gouveai, D. borborema and D. seriema, which composed a polytomic clade in preliminary studies. The analysis of patterns of intraspecific variation revealed two different lineages of period in D. koepferae, probably reflecting introgressive hybridization from D. buzzatii, in concordance with previous molecular data.
Resumo:
OBJECTIVE. Toxic leukoencephalopathy may present acutely or subacutely with symmetrically reduced diffusion in the periventricular and supraventricular white matter, hereafter referred to as periventricular white matter. This entity may reverse both on imaging and clinically. However, a gathering together of the heterogeneous causes of this disorder as seen on MRI with diffusion-weighted imaging (DWI) and an analysis of their likelihood to reverse has not yet been performed. Our goals were to gather causes of acute or subacute toxic leukoencephalopathy that can present with reduced diffusion of periventricular white matter in order to promote recognition of this entity, to evaluate whether DWI with apparent diffusion coefficient (ADC) values can predict the extent of chronic FLAIR abnormality ( imaging reversibility), and to evaluate whether DWI can predict the clinical outcome ( clinical reversibility). MATERIALS AND METHODS. Two neuroradiologists retrospectively reviewed the MRI examinations of 39 patients with acute symptoms and reduced diffusion of periventricular white matter. The reviewers then scored the extent of abnormality on DWI and FLAIR. ADC ratios of affected white matter versus the unaffected periventricular white matter were obtained. Each patient`s clinical records were reviewed to determine the cause and clinical outcome. Histology findings were available in three patients. Correlations were calculated between the initial MRI markers and both the clinical course and the follow-up extent on FLAIR using Spearman`s correlation coefficient. RESULTS. Of the initial 39 patients, seven were excluded because of a nontoxic cause (hypoxic-ischemic encephalopathy [HIE] or congenital genetic disorders) or because of technical errors. In the remaining 32 patients, no correlation was noted between any of the initial MRI markers (percentage of ADC reduction, DWI extent, or FLAIR extent) with the clinical outcome. Three patients had histologic correlation. However, moderate correlation was seen between the extent of abnormality on initial FLAIR and the extent on follow-up FLAIR (r = 0.441, p = 0.047). Of the 13 patients who underwent repeat MRI at 21 days or longer, the reduced diffusion resolved in all but one. Significant differences were noted between ADC values in affected white matter versus unaffected periventricular white matter on initial (p < 0.0001) but not on follow-up MRI (p = 0.13), and in affected white matter on initial versus follow-up (p = 0.0014) in those individuals who underwent repeat imaging on the same magnet (n = 9), confirming resolution of the DWI abnormalities. CONCLUSION. Acute toxic leukoencephalopathy with reduced diffusion may be clinically reversible and radiologically reversible on DWI, and may also be reversible, but to a lesser degree, on FLAIR MRI. None of the imaging markers measured in this study appears to correlate with clinical outcome, which underscores the necessity for prompt recognition of this entity. Alerting the clinician to this potentially reversible syndrome can facilitate treatment and removal of the offending agent in the early stages.
Resumo:
Background: Retinitis pigmentosa (RP) is a group of genetically heterogeneous diseases with progressive degeneration of the retina. The condition can be inherited as an autosomal dominant, autosomal recessive, and X-linked trait. Methods: We report on two female twin pairs. One twin of each pair is affected with RP, the other twin is unaffected, both clinically and functionally. Molecular analysis in both twins included zygosity determination, arrayed primer extension chip analysis for autosomal recessive and dominant RP, sequencing of the entire RPGR gene, and analysis of X-chromosome inactivation status. Results: Both unrelated twin pairs were genetically identical. Of the potential pathogenetic mechanisms, skewed X-inactivation was excluded on leukocytes. Autosomal recessive RP and autosomal dominant RP arrayed primer extension chip analysis result was completely normal, excluding known mutations in known genes as the cause of disease in the affected twins. Sequencing excluded mutations in RPGR. A postzygotic recessive or dominant genetic mutation of an RP gene is not impossible. A postfertilization error as a potential cause of uniparental isodisomy is unlikely albeit not entirely impossible. Conclusion: The authors report on the second and third unrelated identical twin pair discordant for RP. The exact cause of the condition and the explanation of the clinical discordance remain elusive. RETINA 31:1164-1169, 2011
Resumo:
Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-alpha, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-alpha, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-alpha, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Patients with antibody deficiencies are more prone to develop acute neutropenic episodes even during immunoglobulin replacement. The aims of this study were to evaluate the presence of acute neutropenia in 42 patients with primary antibody immunodeficiencies, currently receiving intravenous immunoglobulin (IVIG), and to describe the clinical and laboratory findings during neutropenic episodes. Of all patients, 10 (23.8%) presented acute neutropenia (absolute neutrophil count < 1500 cells/mm(3)) during follow up (mean of 6.4 yr). The absolute neutrophil count ranged from 71 to 1488 cells/mm(3). Neutropenia was not clearly associated with antibiotic prophylactic therapy or immunoglobulin levels, while infections were associated with neutropenia in the majority of episodes. Most acute neutropenia episodes were mild or moderate, except in CVID patients who present more severe neutropenia. Although IVIG may have contributed to reducing the severity of neutropenia, it does not prevent its occurrence in all patients. In conclusion, primary immunodeficient patients, even submitted to IVIG replacement therapy, must be regularly evaluated for neutropenia in order to minimize the risk of infections and its appropriate approach.
Resumo:
Introduction Associations between systemic lupus erythematosus (SLE) and primary immunodeficiencies (PIDs) were analyzed to gain insight into the physiopathology of SLE. Some PIDs have been consistently associated with SLE or lupus-like manifestations: (a) homozygous deficiencies of the early components of the classical complement pathway in the following decreasing order: in C1q, 93% of affected patients developed SLE; in C4, 75%; in C1r/s, 57%; and in C2, up to 25%; (b) female carriers of X-linked chronic granulomatous disease allele; and (c) IgA deficiency, present in around 5% of juvenile SLE. Discussion In the first two groups, disturbances of cellular waste-disposal have been proposed as the main mechanisms of pathogenesis. On the other hand and very interestingly, there are PIDs systematically associated with several autoimmune manifestations in which SLE has not been described, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), immunedys-regulation polyendocrinopathy enteropathy X-linked (IPEX), and autoinumme lymphoproliferative syndrome (ALPS), suggesting that mechanisms considered as critical players for induction and maintenance of tolerance to autoantigens, such as (1) AME-mediated thymic negative selection of lymphocytes, (2) Foxp3+ regulatory T cell-mediated peripheral tolerance, and (3) deletion of auto-reactive lymphocytes by Fas-mediated apoptosis, could not be relevant in SLE physiopathology. The non-description of SLE and neither the most characteristic SLE clinical features among patients with agammaglobulinemia are also interesting observations, which reinforce the essential role of B lymphocytes and antibodies for SLE pathogenesis. Conclusion Therefore, monogenic PIDs represent unique and not fully explored human models for unraveling components of the conundrum represented by the physiopathology of SLE, a prototypical polygenic disease.
Resumo:
Background Primary Immunodeficiencies (PIDs) represent unique opportunities to understand the operation of the human immune system. Accordingly, PIDs associated with autoimmune manifestations provide insights into the pathophysiology of autoimmunity as well as into the genetics of autoimmune diseases (AID). Epidemiological data show that there are PIDs systematically associated with AID, such as immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), Omenn syndrome, autoinunune polyendocrinopathy-candidiasis-ectodertnal dystrophy (APECED), autoinumine lymphoproliferative syndrome (ALPS), and C1q deficiency, while strong associations are seen with a handful of other deficits. Conclusion We interpret such stringent disease associations, together with a wealth of observations in experimental systems, as indicating first of all that natural tolerance to body components is an active, dominant process involving many of the components that ensure responsiveness, rather than, as previously believed, the result of the mere purge of autoreactivities. More precisely, it seems that deficits of Treg cell development, functions, numbers, and T cell receptor repertoire are among the main factors for autoimmunity pathogenesis in many (if not all) PIDs most frequently presenting with autoimmune features. Clearly, other pathophysiological mechanisms are also involved in autoimmunity, but these seem less critical in the process of self-tolerance. Comparing the clinical picture of IPEX cases with those, much less severe, of ALPS or APECED, provides some assessment of the relative importance of each set of mechanisms.
Resumo:
IPEX syndrome is a congenital disorder of immune regulation caused by mutations in the FOXP3 gene, which is required for the suppressive function of naturally arising CD4 + CD25 + regulatory T cells. In this case series we evaluated serum samples from 12 patients with IPEX syndrome for the presence of common autoantibodies associated with a broad range of autoimmune disorders. We note that 75% of patients (9/12) had 1 or more autoantibodies, an incidence far above the cumulative rate observed in the general population. The range of autoantibodies differed between patients and there was no predominant autoantibody or pattern of autoantibodies present in this cohort. Surprisingly, one patient had high-titer anti-mitochondrial antibodies (AMA) typically associated with primary biliary cirrhosis (PBC) although the patient had no signs of cholestasis. PBC is a well-characterized autoimmune disease that occurs primarily in women and includes the serological hallmarks of serum AMA and elevated IgM which were both present in this patient. PBC is virtually absent in children with the exception of one reported child with interleukin 2 receptor a (CD25) deficiency which is associated with an IPEX-like regulatory T cell dysfunction. Based on the present data and the available literature we suggest a direct role for CD4 + CD25 + regulatory T cells in restraining B cell autoantibody production and that defects in regulatory T cells may be crucial to the development of PBC. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Introduction Immunodeficiency with hyper-IgM (HIGM) results from genetic defects in the CD40-CD40 ligand (CD40L) pathway or in the enzymes required for immunoglobulin class switch recombination and somatic hypermutation. HIGM can thus be associated with an impairment of both B-cell and T-cell activation. Results and discussions There are seven main subtypes of HIGM and the most frequent is X-linked HIGM, resulting from CD40L mutations. In addition to the susceptibility to recurrent and opportunistic infections, these patients are prone to autoimmune manifestations, especially hemato-logic abnormalities, arthritis, and inflammatory bowel disease. Furthermore, organ-specific autoantibodies are commonly found in HIGM patients. Conclusions The mechanisms by which HIGM associates to autoimmunity are not completely elucidated but a defective development of regulatory T cells, the presence of IgM autoantibodies and an impaired peripheral B-cell tolerance checkpoint have been implicated. This article reviews the main subtypes of HIGM syndrome, the clinical autoinumme manifestations found in these patients, and the possible mechanisms that would explain this association.