948 resultados para Well-defined mesoporosity
Resumo:
Hydrogels are hydrophilic, three dimensional polymers that imbibe large quantities of water while remaining insoluble in aqueous solutions due to chemical or physical cross-linking. The polymers swell in water or biological fluids, immobilizing the bioactive agent, leading to drug release in a well-defined specific manner. Thus the hydrogels’ elastic properties, swellability and biocompatibility make them excellent formulations for drug delivery. Currently, many drug potencies and therapeutic effects are limited or otherwise reduced because of the partial degradation that occurs before the administered drug reaches the desired site of action. On the other hand, sustained release medications release drugs continually, rather than providing relief of symptoms and protection solely when necessary. In fact, it would be much better if drugs could be administered in a manner that precisely matches physiological needs at desired times and at the desired site (site specific targeting). There is therefore an unmet need to develop controlled drug delivery systems especially for delivery of peptide and protein bound drugs. The purpose of this project is to produce hydrogels for structural drug delivery and time-dependent sustained release of drugs (bioactive agents). We use an innovative polymerisation strategy based on native chemical ligation (NCL) to covalently cross-link polymers to form hydrogels. When mixed in aqueous solution, four armed (polyethylene glycol) amine (PEG-4A) end functionalised with thioester and four branched Nterminal cysteine peptide dendrimers spontaneously conjugated to produce biomimetic hydrogels. These hydrogels showed superior resistance to shear stress compared to an equivalent PEG macromonomer system and were shown to be proteolytically degradable with concomitant release of a model payload molecule. This is the first report of a peptide dendrimers/PEG macromonomer approach to hydrogel production and opens up the prospect of facile hydrogel synthesis together with tailored payload release.
Resumo:
Better management of knowledge assets has the potential to improve business processes and increase productivity. This fact has led to considerable interest in recent years in the knowledge management (KM) phenomenon, and in the main dimensions that can impact on its application in construction. However, a lack of a systematic way of assessing KM initia-tives’ contribution towards achieving organisational business objectives is evident. This paper describes the first stage of a research project intended to develop, and empirically test, a KM input-process-output framework comprising unique and well-defined theoretical constructs representing the KM process and its internal and external determinants in the context of con-struction. The paper presents the underlying principles used in operationally defining each construct through the use of extant KM literature. The KM process itself is explicitly mod-elled via a number of clearly articulated phases that ultimately lead to knowledge utilisation and capitalisation, which in turn adds value or otherwise to meeting defined business objec-tives. The main objective of the model is to reduce the impact of subjectivity in assessing the contribution made by KM practices and initiatives toward achieving performance improvements.
Resumo:
Knowledge management (KM) continues to receive mounting interest within the construction industry due to its potential to offer solutions for organisations seeking competitive advantage. This paper presents a KM input-process-output conceptual model comprising unique and well-defined theoretical constructs representing KM practices and their internal and external determinants in the context of construction. The paper also presents the underlying principles used in operationally defining each construct using extant KM literature, and offers a number of testable hypotheses that capture the inter-relationships between the identified constructs.
Resumo:
In response to an increasing perception of poor OHS consultancy quality amongst the Australian public, regulator and OHS professionals, the Safety Institute Australia (SIA) was tasked by the Victorian government to establish an accreditation process for OHS professionals. The OHS accreditation board decided to base its accreditation on a core "body of knowledge" (BoK), against which applicants are assesssed. While the foundation and structure of the BoK is unclear, the BoK consists of a collection of essays from a variety of invited authors. The BoK comprises about 811 pages in 34 chapters, with significant redundancy and considerable subjective components. The SIA BoK is benchmarked against two international best-practices, the German "Core Definition, Object Catalog and Research Domains of Labour Science (Ergonomics)" (Luzcak, Volpert, Raeithel & Schwier, 1989)(100 pages) and the American "Core Competency Model" for the "Master's Degree in Public Health" (Association of Schools of Public Health, 2006) (21 pages). Both "core definition" and "core competency model" are on a comparative level to the BoK. While the German expert panel consisted of 14 eminent professors, the American panel consisted of 135 members, organized in 6 groups chaired by discipline leading academics. The Australian approach employed a broad approach, where 137 professionals, consultants, emerging academics and academics contributed to 8 workshops. Both the German and the American panels maintained an open communication amongst members and with the discipline community throughout the process, whereas SIA applied an open and directed peer-review process. Moreover, the German process involved an analysis of all congress content and journal publications in the scientific domain in a set timeframe, which were then systematically clustered. These results were further expanded by structured interviews with 38 professors in the discpline, grasping their research and teaching practice. The American workgroup however assumed core scientific areas, underlying the domain. Based upon the a-priori assumption, they then established well defined competencies across all areas using a modified Delphi process. Although the BoK attempts to explore the knowledge in the OHS domain without an imposed structure in a bottom-up approach, it does not result in a structured systematic of the science. We conclude that the outcome of the German, rigorous academic approach, and the US American democratic approach under unambiguous academic leadership both outperform the Australian advocacy group approach. This product was determined for both structure and content of the taxonomy delivered through the processes.
Resumo:
Here we report an ultrasensitive method for detecting bio-active compounds in biological samples by means of functionalised nanoparticles interrogated by surface enhanced Raman spectroscopy (SERS). This method is applicable to the recovery and detection of many diagnostically important peptidyl analytes such as insulin, human growth hormone, growth factors (IGFs) and erythropoietin (EPO), as well as many small molecule analytes and metabolites. Our method, developed to detect EPO, demonstrates its utility in a complex yet well defined biological system. Recombinant human EPO (rhEPO) and EPO analogues have successfully been used to treat anaemia in end-stage renal failure, chronic disorders and infections, cancer and AIDS. Current methods for EPO testing are lengthy, laborious and relatively insensitive to low concentrations. In our rapid screening methodology, gold nanoparticles were functionalised with anti-EPO antibodies to provide very high selectivity towards the EPO protein in urine. These “smart sensor” nanoparticles interact with and trap EPO. Subsequent SERS screening allows for the detection and quantisation of ultra trace amounts (<<10-15 M) of EPO in urine samples with minimal sample preparation. We present data showing that the SERS spectrum differentiates between human endogenous EPO and rhEPO in unpurified urine, and potentially distinguishes between purified EPO isoforms. The elimination of sample preparation and direct screening in biological fluids significantly reduces the time required by current methods. Antibody recognition against a variety of biological targets and the availability of portable commercial SERS analysers for rapid onsite testing suggest broad diagnostic applicability in a flexible analytical platform.
Resumo:
In this paper, the deposition of C-20 fullerenes on a diamond (001)-(2x1) surface and the fabrication of C-20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C-20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C-20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in "C-20-type" films [P. Melion , Int. J. Mod. B 9, 339 (1995); P. Milani , Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C-20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C-20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C-20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp(3) hybridization character, the same as that of a free C-20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C-20 film showed high stability even when the temperature was raised up to 1500 K.
Resumo:
Residual amplitude modulation (RAM) is an unwanted noise source in electro-optic phase modulators. The analysis presented shows that while the magnitude of the RAM produced by a MgO:LiNbO3 modulator increases with intensity, its associated phase becomes less well defined. This combination results in temporal fluctuations in RAM that increase with intensity. This behaviour is explained by the presented phenomenological model based on gradually evolving photorefractive scattering centres randomly distributed throughout the optically thick medium. This understanding is exploited to show that RAM can be reduced to below the 10-5 level by introducing an intense optical beam to erase the photorefractive scatter.
Resumo:
The existence of Macroscopic Fundamental Diagram (MFD), which relates space-mean density and flow, has been shown in urban networks under homogeneous traffic conditions. Since MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. One of the key requirements for well-defined MFD is the homogeneity of the area-wide traffic condition with links of similar properties, which is not universally expected in real world. For the practical application of the MFD concept, several researchers have identified the influencing factors for network homogeneity. However, they did not explicitly take the impact of drivers’ behaviour and information provision into account, which has a significant impact on simulation outputs. This research aims to demonstrate the effect of dynamic information provision on network performance by employing the MFD as a measurement. A microscopic simulation, AIMSUN, is chosen as an experiment platform. By changing the ratio of en-route informed drivers and pre-trip informed drivers different scenarios are simulated in order to investigate how drivers’ adaptation to the traffic congestion influences the network performance with respect to the MFD shape as well as other indicators, such as total travel time. This study confirmed the impact of information provision on the MFD shape, and addressed the usefulness of the MFD for measuring the dynamic information provision benefit.
Resumo:
The calcium-activated potassium ion channel gene (KCNN3) is located in the vicinity of the familial hemiplegic migraine type 2 locus on chromosome 1q21.3. This gene is expressed in the central nervous system and plays a role in neural excitability. Previous association studies have provided some, although not conclusive, evidence for involvement of this gene in migraine susceptibility. To elucidate KCNN3 involvement in migraine, we performed gene-wide SNP genotyping in a high-risk genetic isolate from Norfolk Island, a population descended from a small number of eighteenth century Isle of Man ‘Bounty Mutineer’ and Tahitian founders. Phenotype information was available for 377 individuals who are related through the single, well-defined Norfolk pedigree (96 were affected: 64 MA, 32 MO). A total of 85 SNPs spanning the KCNN3 gene were genotyped in a sub-sample of 285 related individuals (76 affected), all core members of the extensive Norfolk Island ‘Bounty Mutineer’ genealogy. All genotyping was performed using the Illumina BeadArray platform. The analysis was performed using the statistical program SOLAR v4.0.6 assuming an additive model of allelic effect adjusted for the effects of age and sex. Haplotype analysis was undertaken using the program HAPLOVIEW v4.0. A total of four intronic SNPs in the KCNN3 gene displayed significant association (P < 0.05) with migraine. Two SNPs, rs73532286 and rs6426929, separated by approximately 0.1 kb, displayed complete LD (r 2 = 1.00, D′ = 1.00, D′ 95% CI = 0.96–1.00). In all cases, the minor allele led to a decrease in migraine risk (beta coefficient = 0.286–0.315), suggesting that common gene variants confer an increased risk of migraine in the Norfolk pedigree. This effect may be explained by founder effect in this genetic isolate. This study provides evidence for association of variants in the KCNN3 ion channel gene with migraine susceptibility in the Norfolk genetic isolate with the rarer allelic variants conferring a possible protective role. This the first comprehensive analysis of this potential candidate gene in migraine and also the first study that has utilised the unique Norfolk Island large pedigree isolate to implicate a specific migraine gene. Studies of additional variants in KCNN3 in the Norfolk pedigree are now required (e.g. polyglutamine variants) and further analyses in other population data sets are required to clarify the association of the KCNN3 gene and migraine risk in the general outbred population.
Resumo:
During the current (1995-present) eruptive phase of the Soufrière Hills volcano on Montserrat, voluminous pyroclastic flows entered the sea off the eastern flank of the island, resulting in the deposition of well-defined submarine pyroclastic lobes. Previously reported bathymetric surveys documented the sequential construction of these deposits, but could not image their internal structure, the morphology or extent of their base, or interaction with the underlying sediments. We show, by combining these bathymetric data with new high-resolution three dimensional (3D) seismic data, that the sequence of previously detected pyroclastic deposits from different phases of the ongoing eruptive activity is still well preserved. A detailed interpretation of the 3D seismic data reveals the absence of significant (> 3. m) basal erosion in the distal extent of submarine pyroclastic deposits. We also identify a previously unrecognized seismic unit directly beneath the stack of recent lobes. We propose three hypotheses for the origin of this seismic unit, but prefer an interpretation that the deposit is the result of the subaerial flank collapse that formed the English's Crater scarp on the Soufrière Hills volcano. The 1995-recent volcanic activity on Montserrat accounts for a significant portion of the sediments on the southeast slope of Montserrat, in places forming deposits that are more than 60. m thick, which implies that the potential for pyroclastic flows to build volcanic island edifices is significant.
Resumo:
The interaction between new two-dimensional carbon allotropes, i.e. graphyne (GP) and graphdiyne (GD), and light metal complex hydrides LiAlH4, LiBH4, and NaAlH4 was studied using density functional theory (DFT) incorporating long range van der Waals dispersion correction. The light metal complex hydrides show much stronger interaction with GP and GP than that with fullerene due to the well defined pore structure. Such strong interactions greatly affect the degree of charge donation from the alkali metal atom to AlH4 or BH4, consequently destabilizing the Al-H or B-H bonds. Compared to the isolated light metal complex hydride, the presence of GP or GD can lead to a significant reduction of the hydrogen removal energy. Most interestingly, the hydrogen removal energies for LiBHx on GP and with GD are found to be lowered at all the stages (x from 4 to 1) whereas the H-removal energy in the third stage is increased for LiBH4 on fullerene. In addition, the presence of uniformly distributed pores on GP and GD is expected to facilitate the dehydrogenation of light metal complex hydrides. The present results highlight new interesting materials to catalyze light metal complex hydrides for potential application as media for hydrogen storage. Since GD has been successfully synthesized in a recent experiment, we hope the present work will stimulate further experimental investigations in this direction.
Resumo:
Polycrystalline gold electrodes of the kind that are routinely used in analysis and catalysis in aqueous media are often regarded as exhibiting relatively simple double-layer charging/discharging and monolayer oxide formation/ removal in the positive potential region. Application of the large amplitude Fourier transformed alternating current (FT-ac) voltammetric technique that allows the faradaic current contribution of fast electron-transfer processes to be emphasized in the higher harmonic components has revealed the presence of well-defined faradaic (premonolayer oxidation) processes at positive potentials in the double-layer region in acidic and basic media which are enhanced by electrochemical activation. These underlying quasi-reversible interfacial electron-transfer processes may mediate the course of electrocatalytic oxidation reactions of hydrazine, ethylene glycol, and glucose on gold electrodes in aqueous media. The observed responses support key assumptions associated with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis.
Resumo:
The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.
Resumo:
This paper investigates how Enterprise Architecture (EA) evolves due to emerging trends. It specifically explores how EA integrates the Service-oriented Architecture (SOA). Archer’s Morphogenetic theory is used as an analytical approach to distinguish the architectural conditions under which SOA is introduced, to study the relationships between these conditions and SOA introduction, and to reflect on EA evolution (elaborations) that then take place. The paper focuses on reasons for why EA evolution could take place, or not and what architectural changes could happen due to SOA integration. The research builds on sound theoretical foundations to discuss EA evolution in a field that often lacks a solid theoretical groundwork. Specifically, it proposes that critical realism, using the morphogenetic theory, can provide a useful theoretical foundation to study enterprise architecture (EA) evolution. The initial results of a literature review (a-priori model) were extended using explorative interviews. The findings of this study are threefold. First, there are five different levels of EA-SOA integration outcomes. Second, a mature EA, flexible and well-defined EA framework and comprehensive objectives of EA improve the integration outcomes. Third, the analytical separation using Archer’s theory is helpful in order to understand how these different integration outcomes are generated.
Resumo:
In this work the electrochemical formation of porous Cu/Ag materials is reported via the simple and quick method of hydrogen bubble templating. The bulk and surface composition ratio between Ag and Cu was varied in a systematic manner and was readily controlled by the concentration of precursor metal salts in the electrolyte. The incorporation of Ag within the Cu scaffold only affected the formation of well-defined pores at high Ag loading whereas the internal pore wall structure gradually transformed from dendritic to cube like and finally needle like structures, which was due to the concomitant formation of Cu2O within the structure. The materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Their surface properties were further investigated by surface enhanced Raman spectroscopy (SERS) and electrochemically probed by recording the hydrogen evolution reaction (HER) which is highly sensitive to the nature of the surface. The effect of surface composition was then investigated for its influence on two catalytic reactions namely the reduction of ferricyanide ions with thiosulphate ions and the reduction of 4-nitrophenol with NaBH4 in aqueous solution where it was found that the presence of Ag had a beneficial effect in both cases but more so in the case of nitrophenol reduction. It is believed that this material may have many more potential applications in the area of catalysis, electrocatalysis and photocatalysis.