991 resultados para Wake Oscillator Model
Resumo:
The relationship between sleep and epilepsy is both complex and clinically significant. Temporal lobe epilepsy (TLE) influences sleep architecture, while sleep plays an important role in facilitating and/or inhibiting possible epileptic seizures. The pilocarpine experimental model reproduces several features of human temporal lobe epilepsy and is one of the most widely used models in basic research. The aim of the present study was to characterize, behaviorally and electrophysiologically, the phases of sleep-wake cycles (SWC) in male rats with pilocarpine-induced epilepsy. Epileptic rats presented spikes in all phases of the SWC as well as atypical cortical synchronization during attentive wakefulness and paradoxical sleep. The architecture of the sleep-wake phases was altered in epileptic rats, as was the integrity of the SWC. Because our findings reproduce many relevant features observed in patients with epilepsy, this model is suitable to study sleep dysfunction in epilepsy. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial Visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.
Resumo:
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we analyze the double Caldeira-Leggett model: the path integral approach to two interacting dissipative harmonic oscillators. Assuming a general form of the interaction between the oscillators, we consider two different situations: (i) when each oscillator is coupled to its own reservoir, and (ii) when both oscillators are coupled to a common reservoir. After deriving and solving the master equation for each case, we analyze the decoherence process of particular entanglements in the positional space of both oscillators. To analyze the decoherence mechanism we have derived a general decay function, for the off-diagonal peaks of the density matrix, which applies both to common and separate reservoirs. We have also identified the expected interaction between the two dissipative oscillators induced by their common reservoir. Such a reservoir-induced interaction, which gives rise to interesting collective damping effects, such as the emergence of relaxation- and decoherence-free subspaces, is shown to be blurred by the high-temperature regime considered in this study. However, we find that different interactions between the dissipative oscillators, described by rotating or counter-rotating terms, result in different decay rates for the interference terms of the density matrix. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a nonideal mechanical system with the LuGre friction damping model is considered. The mechanical model of the system is an oscillator not necessarily linear connected with an unbalanced motor of excitation with limited power supply. The control of motion and the attenuation of the Sommerfeld effect of the considered nonideal system are analyzed in this paper The mathematical model of the system is represented by coupled non-linear differential equations. The identification of some interesting nonlinear phenomenon in the transient and steady state motion of the system during the passage through resonance (using applied voltages at dc motor as control parameter) is investigated in detail using numerical simulation. [DOI: 10.1115/1.3124783]
Resumo:
This paper presented the particle swarm optimization approach for nonlinear system identification and for reducing the oscillatory movement of the nonlinear systems to periodic orbits. We analyzes the non-linear dynamics in an oscillator mechanical and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This approaches is applied in analyzes the nonlinear dynamics in an oscillator mechanical. The simulation results show the identification by particle swarm optimization is very effective.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a localization criterion based on the information entropy and verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (mu>2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is mu=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations.
Resumo:
We analyse the properties of the Sp(1, R) model states using a basis obtained from the deformed harmonic oscillator wavefunctions. We make an Sp(1, R) calculation for C-12 and consider bases obtained from oblate, triaxial and prolate intrinsic states. The model states are given by angular momentum projection of vibrational phonons, which are associated with giant monopole and quadrupole resonances.
Resumo:
A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian operator - d2/dx2 + x2 + l(l + 1)/x2 + λ|x| -α, where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schrödinger equation for the linear harmonic oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provide accurate approximations for the ground state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large coupling perturbative expansion is carried out and the contributions up to fourth-order to the ground state energy are explicitly evaluated. Numerical results are compared for the special case α = 5/2. © 1989 American Institute of Physics.
Resumo:
We report self-similar properties of periodic structures remarkably organized in the two-parameter space for a two-gene system, described by two-dimensional symmetric map. The map consists of difference equations derived from the chemical reactions for gene expression and regulation. We characterize the system by using Lyapunov exponents and isoperiodic diagrams identifying periodic windows, denominated Arnold tongues and shrimp-shaped structures. Period-adding sequences are observed for both periodic windows. We also identify Fibonacci-type series and Golden ratio for Arnold tongues, and period multiple-of-three windows for shrimps. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
[EN] This poster shows the first attempt to modelize the Gran Canaria Island wake, an obstacle with almost a conical shape (60 km diameter and about 2000 m height). The leeside circulation was modelized for two well-defined street vortex cases during June 2010 and March 2011. Numerical simulations of these events were carried out using the 3.1.1 version of the Weather Research and Forecasting (WRF-ARW) Model. Three different domains with 4.5-km, 1.5-km and 0.5-km horizontal grid spacing and 70 vertical sigma levels were defined. The simulations were performed using two-way interactive nesting between the first and the second and third domains, using different land surface model parameterizations (Thermal diffusion, Noah LSM and RUC) for comparison. Initial conditions were provided by the NCAR Dataset analysis from April 2007. The poster is focused on both episodes using NoahLSM parameterizations.