969 resultados para Vibration analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Perfil Manutenção e Produção

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os modelos a ser analisados pelo Método de Elementos Finitos são cada vez mais complexos e, nos tempos que correm, seria impensável realizar tais análises sem um apoio computorizado. Existe para esta finalidade uma vasta gama de programas que permitem realizar tarefas que passam pelo desenho de estruturas, análise estática de cargas, análise dinâmica e vibrações, visualização do comportamento físico (deformações) em tempo real, que permitem a otimização da estrutura. Sob o pretexto de permitir a qualquer utilizador uma análise de estruturas simples com o Método dos Elementos Finitos, surge esta tese, onde se irá criar de raiz um programa com interface gráfica no ambiente MATLAB® para análise de estruturas simples com dois tipos de elemento finito, triangular de deformação constante e quadrangular de deformação linear. O software desenvolvido, verificado por comparação com um software comercial dedicado para o efeito, efetua malhagem com elementos bidimensionais triangulares e quadriláteros e resolve modelos arbitrados pelo Método de Elementos Finitos, representando estes resultados visualmente e em formato tabular.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La idea básica de detección de defectos basada en vibraciones en Monitorización de la Salud Estructural (SHM), es que el defecto altera las propiedades de rigidez, masa o disipación de energía de un sistema, el cual, altera la respuesta dinámica del mismo. Dentro del contexto de reconocimiento de patrones, esta tesis presenta una metodología híbrida de razonamiento para evaluar los defectos en las estructuras, combinando el uso de un modelo de la estructura y/o experimentos previos con el esquema de razonamiento basado en el conocimiento para evaluar si el defecto está presente, su gravedad y su localización. La metodología involucra algunos elementos relacionados con análisis de vibraciones, matemáticas (wavelets, control de procesos estadístico), análisis y procesamiento de señales y/o patrones (razonamiento basado en casos, redes auto-organizativas), estructuras inteligentes y detección de defectos. Las técnicas son validadas numérica y experimentalmente considerando corrosión, pérdida de masa, acumulación de masa e impactos. Las estructuras usadas durante este trabajo son: una estructura tipo cercha voladiza, una viga de aluminio, dos secciones de tubería y una parte del ala de un avión comercial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studying joint noise is an important parameter for diagnosing temporomandibular dysfunction. In this study, eight groups (n=9) were formed according to joint dysfunction classification, provided by employing vibration analysis equipment. Parameters for analyzing joint noise were: total vibration energy, peak amplitude, and peak frequency. Mouth opening range was also analyzed. Statistical analysis results for each parameter were significant at 1 %. Each analyzed group presented different noise characteristics. This allowed for inclusion of the groups within a determined value category. The patient group with normal condyle/disk relationship always presented the lowest values. The type of joint noise was characterized by analyzing total integral noise, peak amplitude, peak frequency, and mouth opening. Analyzing joint noise using electrovibratography suggests the type of joint dysfunction and may help to establish a diagnosis, as well as a treatment plan.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article correlates laboratory-based understanding in machining of titanium alloys with the industry based outputs and finds possible solutions to improve machining efficiency of titanium alloy Ti-6Al-4V. The machining outputs are explained based on different aspects of chip formation mechanism and practical issues faced by industries during titanium machining. This study also analyzed and linked the methods that effectively improve the machinability of titanium alloys. It is found that the deformation mechanism during machining of titanium alloys is complex and causes basic challenges, such as sawtooth chips, high temperature, high stress on cutting tool, high tool wear and undercut parts. These challenges are correlated and affected by each other. Sawtooth chips cause variation in cutting forces which results in high cyclic stress on cutting tools. On the other hand, low thermal conductivity of titanium alloy causes high temperature. These cause a favorable environment for high tool wear. Thus, improvements in machining titanium alloy depend mainly on overcoming the complexities associated with the inherent properties of this alloy. Vibration analysis kit, high pressure coolant, cryogenic cooling, thermally enhanced machining, hybrid machining and, use of high conductive cutting tool and tool holders improve the machinability of titanium alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigate the possibility of mode localization occurrence in a non-periodic Pfluger's column model of a rocket with an intermediate concentrated mass at its middle point. We discuss the effects of varying the intermediate mass magnitude and its position and the resulting energy confinement for two cases. Free vibration analysis and the severity of mode localization are appraised, without decoupling the system, by considering as a solution basis the fundamental free response or dynamical solution. This allows for the reduction of the dimension of the algebraic modal equation that arises from satisfying the boundary and continuity conditions. By using the same methodology, we also consider the case of a cantilevered Pluger's column with rotational stiffness at the middle support instead of an intermediate concentrated mass. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: The aim of this study was to evaluate the influence of ultrasound during the removal of posts cemented with either zinc phosphate cement, glass ionomer cement or resin cement. Methodology: Eighty-four single-rooted teeth were prepared and after cementation of cast posts, they were randomly divided into six groups of 14. Groups 1, 2 and 3 did not receive ultrasonic vibration, whilst groups 4, 5 and 6 received ultrasonic vibration for 10 min. The force necessary for post removal was determined using a universal testing machine. Results were statistically analysed using ANOVA and Tukey tests (5%). Results: The application of ultrasonic vibration reduced the retention provided by zinc phosphate and glass ionomer cements by 39% and 33%, respectively. Conclusions: A statistically significant reduction in the force necessary to remove posts cemented with zinc phosphate and glass ionomer cements occurred following application of ultrasound. The application of ultrasonic vibration did not influence the retention of cast posts cemented with resin cement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is related to the ability of monitoring the state and deciding the level of damage or deterioration within aerospace, civil and mechanical systems. In this sense, this paper deals with the application of a two-step auto-regressive and auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage diagnosis in structural systems. This damage detection algorithm is based on the. monitoring of residual error as damage-sensitive indexes, obtained through vibration response measurements. In complex structures there are. many positions under observation and a large amount of data to be handed, making difficult the visualization of the signals. This paper also investigates data compression by using principal component analysis. In order to establish a threshold value, a fuzzy c-means clustering is taken to quantify the damage-sensitive index in an unsupervised learning mode. Tests are made in a benchmark problem, as proposed by IASC-ASCE with different damage patterns. The diagnosis that was obtained showed high correlation with the actual integrity state of the structure. Copyright © 2007 by ABCM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with a system involving a flexible rod subjected to magnetic forces that can bend it while simultaneously subjected to external excitations produces complex and nonlinear dynamic behavior, which may present different types of solutions for its different movement-related responses. This fact motivated us to analyze such a mechanical system based on modeling and numerical simulation involving both, integer order calculus (IOC) and fractional order calculus (FOC) approaches. The time responses, pseudo phase portraits and Fourier spectra have been presented. The results obtained can be used as a source for conduct experiments in order to obtain more realistic and more accurate results about fractional-order models when compared to the integer-order models. © Published under licence by IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The implementation of vibration analysis techniques based on virtual instrumentation has spread increasingly in the academic and industrial branch, since the use of any software for this type of analysis brings good results at low cost. Among the existing software for programming and creation of virtual instruments, the LabVIEW was chosen for this project. This software has good interface with the method of graphical programming. In this project, it was developed a system of rotating machine condition monitoring. This monitoring system is applied in a test stand, simulating large scale applications, such as in hydroelectric, nuclear and oil exploration companies. It was initially used a test stand, where an instrumentation for data acquisition was inserted, composed of accelerometers and inductive proximity sensors. The data collection system was structured on the basis of an NI 6008 A/D converter of National Instruments. An electronic circuit command was developed through the A/D converter for a remote firing of the test stand. The equipment monitoring is performed through the data collected from the sensors. The vibration signals collected by accelerometers are processed in the time domain and frequency. Also, proximity probes were used for the axis orbit evaluation and an inductive sensor for the rotation and trigger measurement. © (2013) Trans Tech Publications, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Torsional vibration predictions and measurements of a marine propulsion system, which has both damping and a highly flexible coupling, are presented in this paper. Using the conventional approach to stress prediction in the shafting system, the numerical predictions and the experimental torsional vibration stress curves in some parts of the shafting system are found to be quite different. The free torsional vibration characteristics and forced torsional vibration response of the system are analyzed in detail to investigate this phenomenon. It is found that the second to fourth natural modes of the shafting system have significant local deformation. This results in large torsional resonant responses in different sections of the system corresponding to different engine speeds. The results show that when there is significant local deformation in the shafting system for different modes, then multi-point measurements should be made, rather than the conventional method of using a single measurement at the free end of the shaft, to obtain the full torsional vibration characteristics of the shafting system.