917 resultados para Vertebral fractures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebral osteoporotic fracture (VOF) is a major problem of public health. Surgical treatments such as vertebroplasty and kyphoplasty are interesting adjuvant treatments for the management of osteoporosis. A consensus proposed by the principal contributors of this management is important. Regarding the actual data, we propose a vertebroplasty or a kyphoplasty for all patients suffering of an acute VOF. If a previous kyphosis or an important local kyphosis exists, secondary to the acute VOF or others, we propose a kyphoplasty. If the VOF is older and the conservative treatment is inefficient, we propose a vertebroplasty. In all cases, a specific management and treatment of osteoporosis is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis (OP) is a systemic skeletal disease characterized by a low bone mineral density (BMD) and a micro-architectural (MA) deterioration. Clinical risk factors (CRF) are often used as a MA approximation. MA is yet evaluable in daily practice by the trabecular bone score (TBS) measure. TBS is very simple to obtain, by reanalyzing a lumbar DXA-scan. TBS has proven to have diagnosis and prognosis values, partially independent of CRF and BMD. The aim of the OsteoLaus cohort is to combine in daily practice the CRF and the information given by DXA (BMD, TBS and vertebral fracture assessment (VFA)) to better identify women at high fracture risk. The OsteoLaus cohort (1400 women 50 to 80 years living in Lausanne, Switzerland) started in 2010. This study is derived from the cohort COLAUS who started in Lausanne in 2003. The main goal of COLAUS is to obtain information on the epidemiology and genetic determinants of cardiovascular risk in 6700 men and women. CRF for OP, bone ultrasound of the heel, lumbar spine and hip BMD, VFA by DXA and MA evaluation by TBS are recorded in OsteoLaus. Preliminary results are reported. We included 631 women: mean age 67.4 ± 6.7 years, BMI 26.1 ± 4.6, mean lumbar spine BMD 0.943 ± 0.168 (T-score − 1.4 SD), and TBS 1.271 ± 0.103. As expected, correlation between BMD and site matched TBS is low (r2 = 0.16). Prevalence of VFx grade 2/3, major OP Fx and all OP Fx is 8.4%, 17.0% and 26.0% respectively. Age- and BMI-adjusted ORs (per SD decrease) are 1.8 (1.2-2.5), 1.6 (1.2-2.1), and 1.3 (1.1-1.6) for BMD for the different categories of fractures and 2.0 (1.4-3.0), 1.9 (1.4-2.5), and 1.4 (1.1-1.7) for TBS respectively. Only 32 to 37% of women with OP Fx have a BMD < − 2.5 SD or a TBS < 1.200. If we combine a BMD < − 2.5 SD or a TBS < 1.200, 54 to 60% of women with an osteoporotic Fx are identified. As in the already published studies, these preliminary results confirm the partial independence between BMD and TBS. More importantly, a combination of TBS subsequent to BMD increases significantly the identification of women with prevalent OP Fx which would have been misclassified by BMD alone. For the first time we are able to have complementary information about fracture (VFA), density (BMD), micro- and macro architecture (TBS and HAS) from a simple, low ionizing radiation and cheap device: DXA. Such complementary information is very useful for the patient in the daily practice and moreover will likely have an impact on cost effectiveness analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the prevalence of low bone mineral density (BMD) and osteoporotic fractures in kidney transplantation (KT) patients and determined risk factors associated with osteoporotic fractures. The study was conducted on 191 patients (94 men and 97 women) with first KT for 3 years or more presenting stable and preserved renal function (serum creatinine levels lower than 2.5 mg/dl). KT patients were on immunosuppressive therapy and the cumulative doses of these drugs were also evaluated. BMD was determined by dual-energy X-ray absorptiometry at multiple sites (spine, femur and total body). Quantitative ultrasound of the calcaneus (broadband ultrasound attenuation, speed of sound, and stiffness index, SI) was also performed. Twenty-four percent (46) of all patients had either vertebral (29/46) or appendicular (17/46) fractures. We found osteoporosis and osteopenia in 8.5-13.4 and 30.9-35.1% of KT patients, respectively. Women had more fractures than men. In women, prevalent fractures were associated with diabetes mellitus [OR = 11.5, 95% CI (2.4-55.7)], time since menopause [OR = 3.7, 95% CI (1.2-11.9)], femoral neck BMD [OR = 1.99, 95% CI (1.4-2.8)], cumulative dose of steroids [OR = 1.1, 95% CI (1.02-1.12)] and low SI [OR = 1.1, 95% CI (1.0-1.2)]. In men, fractures were associated with lower lumbar spine BMD [OR = 1.75, 95% CI (1.1-2.7)], lower SI [OR = 1.1, 95% CI (1.03-1.13)], duration of dialysis [OR = 1.3, 95% CI (1.13-2.7)], and lower body mass index [OR = 1.24, 95% CI (1.1-1.4). Our results demonstrate high prevalence of low BMD and osteoporotic fractures in patients receiving a successful kidney transplant and indicate the need for specific intervention to prevent osteoporosis in this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJETIVO: Avaliar a acurácia e a reprodutibilidade das imagens da ressonância magnética (RM) nas lesões ligamentares traumáticas da coluna vertebral. MÉTODOS: Estudo retrospectivo para avaliação das imagens da RM de 32 pacientes com lesões traumáticas da coluna vertebral submetidos a tratamento cirúrgico. A avaliação das lesões do complexo ligamentar posterior (CLP) por imagens da RM foi realizada independentemente por dois radiologistas. Um grupo de pacientes tinha exames com inclusão de sequência com supressão de gordura sensível ao líquido (STIR ou SPAIR T2), além das imagens de rotina e no outro grupo os exames de RM não incluíam imagens com a supressão da gordura. As avaliações dos exames de imagem foram comparadas com as observações obtidas durante o ato cirúrgico. Foi realizada a analise de reprodutibilidade intra e interobservador entre os dois radiologistas pelo cálculo do coeficiente Kappa. RESULTADOS: Foi observada lesão do CLP em 21/32 pacientes. De forma geral a sensibilidade da RM para lesões do CLP variou entre 88,9% a 100% e a especificidade entre 0 e 50%. A concordância entre a avaliação dos radiologistas foi maior nos exames de ressonância magnética sem a supressão da gordura (Κ=0,6) do que nos exames que incluíram sequências com supressão (Κ=0,34). CONCLUSÃO: A avaliação de lesões dos ligamentos posteriores por meio da RM pelos radiologistas resultou em boa sensibilidade em relação aos achados cirúrgicos, porém com baixa especificidade, reproduzindo resultados da literatura. Na casuística atual a utilização do sinal de edema presente nas sequências com supressão de gordura diminuiu a concordância interobservador.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebroplasty and kyphoplasty are well-established minimally invasive treatment options for compression fractures of osteoporotic vertebral bodies. Possible procedural disadvantages, however, include incomplete fracture reduction or a significant loss of reduction after balloon tamp deflation, prior to cement injection. A new procedure called "vertebral body stenting" (VBS) was tested in vitro and compared to kyphoplasty. VBS uses a specially designed catheter-mounted stent which can be implanted and expanded inside the vertebral body. As much as 24 fresh frozen human cadaveric vertebral bodies (T11-L5) were utilized. After creating typical compression fractures, the vertebral bodies were reduced by kyphoplasty (n = 12) or by VBS (n = 12) and then stabilized with PMMA bone cement. Each step of the procedure was performed under fluoroscopic control and analysed quantitatively. Finally, static and dynamic biomechanical tests were performed. A complete initial reduction of the fractured vertebral body height was achieved by both systems. There was a significant loss of reduction after balloon deflation in kyphoplasty compared to VBS, and a significant total height gain by VBS (mean +/- SD in %, p < 0.05, demonstrated by: anterior height loss after deflation in relation to preoperative height [kyphoplasty: 11.7 +/- 6.2; VBS: 3.7 +/- 3.8], and total anterior height gain [kyphoplasty: 8.0 +/- 9.4; VBS: 13.3 +/- 7.6]). Biomechanical tests showed no significant stiffness and failure load differences between systems. VBS is an innovative technique which allows for the possibly complete reduction of vertebral compression fractures and helps maintain the restored height by means of a stent. The height loss after balloon deflation is significantly decreased by using VBS compared to kyphoplasty, thus offering a new promising option for vertebral augmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PMMA is the most common bone substitute used for vertebroplasty. An increased fracture rate of the adjacent vertebrae has been observed after vertebroplasty. Decreased failure strength has been noted in a laboratory study of augmented functional spine units (FSUs), where the adjacent, non-augmented vertebral body always failed. This may provide evidence that rigid cement augmentation may facilitate the subsequent collapse of the adjacent vertebrae. The purpose of this study was to evaluate whether the decrease in failure strength of augmented FSUs can be avoided using low-modulus PMMA bone cement. In cadaveric FSUs, overall stiffness, failure strength and stiffness of the two vertebral bodies were determined under compression for both the treated and untreated specimens. Augmentation was performed on the caudal vertebrae with either regular or low-modulus PMMA. Endplate and wedge-shaped fractures occurred in the cranial and caudal vertebrae in the ratios endplate:wedge (cranial:caudal): 3:8 (5:6), 4:7 (7:4) and 10:1 (10:1) for control, low-modulus and regular cement group, respectively. The mean failure strength was 3.3 +/- 1 MPa with low-modulus cement, 2.9 +/- 1.2 MPa with regular cement and 3.6 +/- 1.3 MPa for the control group. Differences between the groups were not significant (p = 0.754 and p = 0.375, respectively, for low-modulus cement vs. control and regular cement vs. control). Overall FSU stiffness was not significantly affected by augmentation. Significant differences were observed for the stiffness differences of the cranial to the caudal vertebral body for the regular PMMA group to the other groups (p < 0.003). The individual vertebral stiffness values clearly showed the stiffening effect of the regular cement and the lesser alteration of the stiffness of the augmented vertebrae using the low-modulus PMMA compared to the control group (p = 0.999). In vitro biomechanical study and biomechanical evaluation of the hypothesis state that the failure strength of augmented functional spine units could be better preserved using low-modulus PMMA in comparison to regular PMMA cement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimally invasive vertebral augmentation-based techniques have been used for the treatment of spinal fractures (osteoporotic and malignant) for approximately 25 years. In this review, we try to give an overview of the current spectrum of percutaneous augmentation techniques, safety aspects and indications. Crucial factors for success are careful patient selection, proper technique and choice of the ideal cement augmentation option. Most compression fractures present a favourable natural course, with reduction of pain and regainment of mobility after a few days to several weeks, whereas other patients experience a progressive collapse and persisting pain. In this situation, percutaneous cement augmentation is an effective treatment option with regards to pain and disability reduction, improvement of quality of life and ambulatory and pulmonary function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Up to one third of BKP treated cases shows no appreciable height restoration due to loss of both restored height and kyphotic realignment after balloon deflation. This shortcoming has called for an improved method that maintains the height and realignment reached by the fully inflated balloon until stabilization of the vertebral body by PMMA-based cementation. Restoration of the physiological vertebral body height for pain relief and for preventing further fractures of adjacent and distant vertebral bodies must be the main aim for such a method. A new vertebral body stenting system (VBS) stabilizes the vertebral body after balloon deflation until cementation. The radiographic and safety results of the first 100 cases where VBS was applied are presented. METHODS During the planning phase of an ongoing international multicenter RCT, radiographic, procedural and followup details were retrospectively transcribed from charts and xrays for developing and testing the case report forms. Radiographs were centrally assessed at the institution of the first/senior author. RESULTS 100 patients (62 with osteoporosis) with a total of 103 fractured vertebral bodies were treated with the VBS system. 49 were females with a mean age of 73.2 years; males were 66.7 years old. The mean preoperative anterior-middle-posterior heights were 20.3-17.6-28.0 mm, respectively. The mean local kyphotic angle was 13.1[degree sign]. The mean preoperative Beck Index (anterior edge height/posterior edge height) was 0.73, the mean alternative Beck Index (middle height/posterior edge height) was 0.63. The mean postoperative heights were restored to 24.5-24.6-30.4 mm, respectively. The mean local kyphotic angle was reduced to 8.9[degree sign]. The mean postoperative Beck Index was 0.81, the mean alternative one was 0.82. The overall extrusion rate was 29.1%, the symptomatic one was 1%. In the osteoporosis subgroup there were 23.8% extrusions. Within the three months followup interval there were 9% of adjacent and 4% of remote new fractures, all in the osteoporotic group. CONCLUSIONS VBS showed its strengths especially in realignment of crush and biconcave fractures. Given that fracture mobility is present, the realignment potential is sound and increases with the severity of preoperative vertebral body deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Denosumab reduced the incidence of new fractures in postmenopausal women with osteoporosis by 68% at the spine and 40% at the hip over 36 months compared with placebo in the FREEDOM study. This efficacy was supported by improvements from baseline in vertebral (18.2%) strength in axial compression and femoral (8.6%) strength in sideways fall configuration at 36 months, estimated in Newtons by an established voxel-based finite element (FE) methodology. Since FE analyses rely on the choice of meshes, material properties, and boundary conditions, the aim of this study was to independently confirm and compare the effects of denosumab on vertebral and femoral strength during the FREEDOM trial using an alternative smooth FE methodology. Unlike the previous FE study, effects on femoral strength in physiological stance configuration were also examined. QCT data for the proximal femur and two lumbar vertebrae were analyzed by smooth FE methodology at baseline, 12, 24, and 36 months for 51 treated (denosumab) and 47 control (placebo) subjects. QCT images were segmented and converted into smooth FE models to compute bone strength. L1 and L2 vertebral bodies were virtually loaded in axial compression and the proximal femora in both fall and stance configurations. Denosumab increased vertebral body strength by 10.8%, 14.0%, and 17.4% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Denosumab also increased femoral strength in the fall configuration by 4.3%, 5.1%, and 7.2% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Similar improvements were observed in the stance configuration with increases of 4.2%, 5.2%, and 5.2% from baseline (p ≤ 0.0007). Differences between the increasing strengths with denosumab and the decreasing strengths with placebo were significant starting at 12 months (vertebral and femoral fall) or 24 months (femoral stance). Using an alternative smooth FE methodology, we confirmed the significant improvements in vertebral body and proximal femur strength previously observed with denosumab. Estimated increases in strength with denosumab and decreases with placebo were highly consistent between both FE techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To determine the predictive value of the vertebral trabecular bone score (TBS) alone or in addition to bone mineral density (BMD) with regard to fracture risk. METHODS Retrospective analysis of the relative contribution of BMD [measured at the femoral neck (FN), total hip (TH), and lumbar spine (LS)] and TBS with regard to the risk of incident clinical fractures in a representative cohort of elderly post-menopausal women previously participating in the Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk study. RESULTS Complete datasets were available for 556 of 701 women (79 %). Mean age 76.1 years, LS BMD 0.863 g/cm(2), and TBS 1.195. LS BMD and LS TBS were moderately correlated (r (2) = 0.25). After a mean of 2.7 ± 0.8 years of follow-up, the incidence of fragility fractures was 9.4 %. Age- and BMI-adjusted hazard ratios per standard deviation decrease (95 % confidence intervals) were 1.58 (1.16-2.16), 1.77 (1.31-2.39), and 1.59 (1.21-2.09) for LS, FN, and TH BMD, respectively, and 2.01 (1.54-2.63) for TBS. Whereas 58 and 60 % of fragility fractures occurred in women with BMD T score ≤-2.5 and a TBS <1.150, respectively, combining these two thresholds identified 77 % of all women with an osteoporotic fracture. CONCLUSIONS Lumbar spine TBS alone or in combination with BMD predicted incident clinical fracture risk in a representative population-based sample of elderly post-menopausal women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate patients with transverse fractures of the shaft of the humerus treated with indirect reduction and internal fixation with plate and screws through minimally invasive technique. Inclusion criteria were adult patients with transverse diaphyseal fractures of the humerus closed, isolated or not occurring within 15 days of the initial trauma. Exclusion criteria were patients with compound fractures. In two patients, proximal screw loosening occurred, however, the fractures consolidated in the same mean time as the rest of the series. Consolidation with up to 5 degrees of varus occurred in five cases and extension deficit was observed in the patient with olecranon fracture treated with tension band, which was not considered as a complication. There was no recurrence of infection or iatrogenic radial nerve injury. It can be concluded that minimally invasive osteosynthesis with bridge plate can be considered a safe and effective option for the treatment of transverse fractures of the humeral shaft. Level of Evidence III, Therapeutic Study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to use mechanical and photoelastic tests to compare the performance of cannulated screws with other fixation methods in mandibular symphysis fractures. Ten polyurethane mandibles were allocated to each group and fixed as follows: group PRP, 2 perpendicular miniplates; group PLL, 1 miniplate and 1 plate, parallel; and group CS, 2 cannulated screws. Vertical linear loading tests were performed. The differences between mean values were analyzed with the Tukey test. The photoelastic test was carried out using a polariscope. The results revealed differences between the CS and PRP groups at 1, 3, 5, and 10 millimeters of displacement. The photoelastic test confirmed higher stress concentration in all groups close to the mandibular base, whereas the CS group showed it throughout the region assessed. Conical cannulated screws performed well in mechanical and photoelastic tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To perform a comparative evaluation of the mechanical resistance of simulated fractures of the mandibular body which were repaired using different fixation techniques with two different brands of 2.0 mm locking fixation systems. Four aluminum hemimandibles with linear sectioning simulating a mandibular body fracture were used as the substrates and were fixed using the two techniques and two different brands of fixation plate. These were divided into four groups: groups I and II were fixed with one four-hole plate, with four 6 mm screws in the tension zone and one four-hole plate, with four 10 mm screws in the compression zone; and groups III and IV were fixed with one four-hole plate with four 6 mm screws in the neutral zone. Fixation plates manufactured by Tóride were used for groups I and III, and by Traumec for groups II and IV. The hemimandibles were submitted to vertical, linear load testing in an Instron 4411 servohydraulic mechanical testing unit, and the load/displacement (3 mm, 5 mm and 7 mm) and the peak loads were measured. Means and standard deviations were evaluated applying variance analysis with a significance level of 5%. The only significant difference between the brands was seen at displacements of 7 mm. Comparing the techniques, groups I and II showed higher mechanical strength than groups III and IV, as expected. For the treatment of mandibular linear body fracture, two locking plates, one in the tension zone and another in the compression zone, have a greater mechanical strength than a single locking plate in the neutral zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to compare four methods of fixation in mandibular body fractures. Mechanical and photoelastic tests were performed using polyurethane and photoelastic resin mandibles, respectively. The study groups contained the following: (I), two miniplates of 2.0 mm; (II) one 2.0 mm plate and an Erich arch bar; (III) one 2.4 mm plate and an Erich arch bar, and (IV) one 2.0 mm plate and one 2.4 mm plate. The differences between the mean values were analyzed using Tukey's test, the Mann-Whitney test and the Bonferroni correction. Group II recorded the lowest resistance, followed by groups I, IV and III. The photoelastic test confirmed the increase of tension in group II. The 2.4 mm system board in linear mandibular body fractures provided more resistance and the use of only one 2.0 mm plate in the central area of the mandible created higher tension.