905 resultados para Vehicle counting and classification
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg(-1), being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol(c) kg(-1)), Ca2+ and Mg-2 contents ranged from 0.4 to 0.8 cmol(c) kg(-1) and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
In Brazil, the principal source of air pollution is the combustion of fuels (ethanol, gasohol, and diesel). In this study, we quantify the contributions that vehicle emissions make to the urban fine particulate matter (PM2.5) mass in six state capitals in Brazil, collecting data for use in a larger project evaluating the impact of air pollution on human health. From winter 2007 to winter 2008, we collected 24-h PM2.5 samples, employing gravimetry to determine PM2.5 mass concentrations; reflectance to quantify black carbon concentrations; X-ray fluorescence to characterize elemental composition; and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM2.5 concentrations in the cities of Sao Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28, 17.2, 14.7, 14.4, 13.4, and 7.3 mu g/m(3), respectively. In Sao Paulo and Rio de Janeiro, black carbon explained approximately 30% of the PM2.5 mass. We used receptor models to identify distinct source-related PM2.5 fractions and correlate those fractions with daily mortality rates. Using specific rotation factor analysis, we identified the following principal contributing factors: soil and crustal material; vehicle emissions and biomass burning (black carbon factor); and fuel oil combustion in industries (sulfur factor). In all six cities, vehicle emissions explained at least 40% of the PM2.5 mass. Elemental composition determination with receptor modeling proved an adequate strategy to identify air pollution sources and to evaluate their short- and long-term effects on human health. Our data could inform decisions regarding environmental policies vis-a-vis health care costs.
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg-1, being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol c kg-1 ), Ca2+ and Mg² contents ranged from 0.4 to 0.8 cmol c kg-1 and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
In this paper,we present a novel texture analysis method based on deterministic partially self-avoiding walks and fractal dimension theory. After finding the attractors of the image (set of pixels) using deterministic partially self-avoiding walks, they are dilated in direction to the whole image by adding pixels according to their relevance. The relevance of each pixel is calculated as the shortest path between the pixel and the pixels that belongs to the attractors. The proposed texture analysis method is demonstrated to outperform popular and state-of-the-art methods (e.g. Fourier descriptors, occurrence matrix, Gabor filter and local binary patterns) as well as deterministic tourist walk method and recent fractal methods using well-known texture image datasets.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.
Resumo:
This thesis is aimed to assess similarities and mismatches between the outputs from two independent methods for the cloud cover quantification and classification based on quite different physical basis. One of them is the SAFNWC software package designed to process radiance data acquired by the SEVIRI sensor in the VIS/IR. The other is the MWCC algorithm, which uses the brightness temperatures acquired by the AMSU-B and MHS sensors in their channels centered in the MW water vapour absorption band. At a first stage their cloud detection capability has been tested, by comparing the Cloud Masks they produced. These showed a good agreement between two methods, although some critical situations stand out. The MWCC, in effect, fails to reveal clouds which according to SAFNWC are fractional, cirrus, very low and high opaque clouds. In the second stage of the inter-comparison the pixels classified as cloudy according to both softwares have been. The overall observed tendency of the MWCC method, is an overestimation of the lower cloud classes. Viceversa, the more the cloud top height grows up, the more the MWCC not reveal a certain cloud portion, rather detected by means of the SAFNWC tool. This is what also emerges from a series of tests carried out by using the cloud top height information in order to evaluate the height ranges in which each MWCC category is defined. Therefore, although the involved methods intend to provide the same kind of information, in reality they return quite different details on the same atmospheric column. The SAFNWC retrieval being very sensitive to the top temperature of a cloud, brings the actual level reached by this. The MWCC, by exploiting the capability of the microwaves, is able to give an information about the levels that are located more deeply within the atmospheric column.
Resumo:
Reticulate eruptions of vascular origin may represent an underlying arterial, venous, microvascular or combined pathology. In the presence of arterial pathology, individual rings are centred around ascending arterial vessels that supply the corresponding area of skin within an arterial hexagon that clinically presents with a blanched centre. Confluence of multiple arterial hexagons generates a stellate (star-like) pattern. In the presence of a primary venous pathology, individual rings correspond to the underlying reticular veins forming multiple venous rings. Focal involvement of a limited number of vessels presents with a branched (racemosa) configuration while a generalized involvement forms a reticulate (net-like) pattern. 'Livedo' refers to the colour and not the pattern of the eruption. Primary livedo reticularis (Syn. cutis marmorata) is a physiological response to cold and presents with a diffuse blanchable reticulate eruption due to vasospasm of the feeding arteries and sluggish flow and hyperviscosity in the draining veins. Livedo reticularis may be secondary to underlying conditions associated with hyperviscosity of blood. Livedo racemosa is an irregular, branched eruption that is only partially-blanchable or non-blanchable and always signifies a pathological process. Retiform purpura may be primarily inflammatory with secondary haemorrhage or thrombohaemorrhagic, as seen in disseminated intravascular coagulopathy.
Resumo:
Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of morphology-based approaches. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Eosinophilia is an important indicator of various neoplastic and nonneoplastic conditions. Depending on the underlying disease and mechanisms, eosinophil infiltration can lead to organ dysfunction, clinical symptoms, or both. During the past 2 decades, several different classifications of eosinophilic disorders and related syndromes have been proposed in various fields of medicine. Although criteria and definitions are, in part, overlapping, no global consensus has been presented to date. The Year 2011 Working Conference on Eosinophil Disorders and Syndromes was organized to update and refine the criteria and definitions for eosinophilic disorders and to merge prior classifications in a contemporary multidisciplinary schema. A panel of experts from the fields of immunology, allergy, hematology, and pathology contributed to this project. The expert group agreed on unifying terminologies and criteria and a classification that delineates various forms of hypereosinophilia, including primary and secondary variants based on specific hematologic and immunologic conditions, and various forms of the hypereosinophilic syndrome. For patients in whom no underlying disease or hypereosinophilic syndrome is found, the term hypereosinophilia of undetermined significance is introduced. The proposed novel criteria, definitions, and terminologies should assist in daily practice, as well as in the preparation and conduct of clinical trials.
Resumo:
Eosinophils and their products play an essential role in the pathogenesis of various reactive and neoplastic disorders. Depending on the underlying disease, molecular defect and involved cytokines, hypereosinophilia may develop and may lead to organ damage. In other patients, persistent eosinophilia is accompanied by typical clinical findings, but the causative role and impact of eosinophilia remain uncertain. For patients with eosinophil-mediated organ pathology, early therapeutic intervention with agents reducing eosinophil counts can be effective in limiting or preventing irreversible organ damage. Therefore, it is important to approach eosinophil disorders and related syndromes early by using established criteria, to perform all appropriate staging investigations, and to search for molecular targets of therapy. In this article, we review current concepts in the pathogenesis and evolution of eosinophilia and eosinophil-related organ damage in neoplastic and non-neoplastic conditions. In addition, we discuss classifications of eosinophil disorders and related syndromes as well as diagnostic algorithms and standard treatment for various eosinophil-related disorders.
Resumo:
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks.