3D Intervertebral Disc Localization and Segmentation from MR Images by Data-Driven Regression and Classification
Contribuinte(s) |
Wu, Guorong Zhang, Daoqiang Zhou, Luping |
---|---|
Data(s) |
2014
|
Resumo |
In this paper we propose a new fully-automatic method for localizing and segmenting 3D intervertebral discs from MR images, where the two problems are solved in a unified data-driven regression and classification framework. We estimate the output (image displacements for localization, or fg/bg labels for segmentation) of image points by exploiting both training data and geometric constraints simultaneously. The problem is formulated in a unified objective function which is then solved globally and efficiently. We validate our method on MR images of 25 patients. Taking manually labeled data as the ground truth, our method achieves a mean localization error of 1.3 mm, a mean Dice metric of 87%, and a mean surface distance of 1.3 mm. Our method can be applied to other localization and segmentation tasks. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/67983/1/chp%253A10.1007%252F978-3-319-10581-9_7.pdf Chu, Chengwen; Belavy, D.; Zheng, Guoyan (2014). 3D Intervertebral Disc Localization and Segmentation from MR Images by Data-Driven Regression and Classification. In: Wu, Guorong; Zhang, Daoqiang; Zhou, Luping (eds.) MLMI 2014, LNCS 8679. Lecture Notes in Computer Science: Vol. 8679 (pp. 50-58). Cham: Springer 10.1007/978-3-319-10581-9_7 <http://dx.doi.org/10.1007/978-3-319-10581-9_7> doi:10.7892/boris.67983 info:doi:10.1007/978-3-319-10581-9_7 urn:issn:0302-9743 urn:isbn:978-3-319-10580-2 |
Idioma(s) |
eng deu |
Publicador |
Springer |
Relação |
http://boris.unibe.ch/67983/ |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Chu, Chengwen; Belavy, D.; Zheng, Guoyan (2014). 3D Intervertebral Disc Localization and Segmentation from MR Images by Data-Driven Regression and Classification. In: Wu, Guorong; Zhang, Daoqiang; Zhou, Luping (eds.) MLMI 2014, LNCS 8679. Lecture Notes in Computer Science: Vol. 8679 (pp. 50-58). Cham: Springer 10.1007/978-3-319-10581-9_7 <http://dx.doi.org/10.1007/978-3-319-10581-9_7> |
Palavras-Chave | #570 Life sciences; biology #610 Medicine & health #620 Engineering |
Tipo |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion PeerReviewed |