984 resultados para Vascular Resistance
Resumo:
Recent data indicate that bradykinin participates in the regulation of neonatal glomerular function and also acts as a growth regulator during renal development. The aim of the present study was to investigate the involvement of bradykinin in the maturation of renal function. Bradykinin beta2-receptors of newborn rabbits were inhibited for 4 days by Hoe 140. The animals were treated with 300 microg/kg s.c. Hoe 140 (group Hoe, n = 8) or 0.9% NaCl (group control, n = 8) twice daily. Clearance studies were performed in anesthetized rabbits at the age of 8-9 days. Bradykinin receptor blockade did not impair kidney growth, as demonstrated by similar kidney weights in the two groups, nor did it influence blood pressure. Renal blood flow was higher, while renal vascular resistance and filtration fraction were lower in Hoe 140-treated rabbits. No difference in glomerular filtration rate was observed. The unexpectedly higher renal perfusion observed in group Hoe cannot be explained by the blockade of the known vasodilator and trophic effect of bradykinin. Our results indicate that in intact kallikrein-kinin system is necessary for the normal functional development of the kidney.
Resumo:
INTRODUCTION: Pulmonary hypertension is a hemodynamic condition occurring rarely in pediatrics. Nevertheless, it is associated with significant morbidity and mortality. When characterized by progressive pulmonary vascular structural changes, the disease is called pulmonary arterial hypertension (PAH). It results in increased pulmonary vascular resistance and eventual right ventricular failure. In the vast majority of cases, pediatric PAH is idiopathic or associated with congenital heart disease, and, contrary to adult PAH, is rarely associated with connective tissue, portal hypertension, HIV infection or thromboembolic disease. AREAS COVERED: This article reviews the current drug therapies available for the management of pediatric PAH. These treatments target the recognized pathophysiological pathways of PAH with endothelin-1 receptor antagonists, prostacyclin analogs and PDE type 5 inhibitors. New treatments and explored pathways are briefly discussed. EXPERT OPINION: Although there is still no cure for PAH, quality of life and survival have been improved significantly with specific drug therapies. Nevertheless, management of pediatric PAH remains challenging, and depends mainly on results from adult clinical trials and pediatric experts. Further research on PAH-specific treatments in the pediatric population and data from international registries are needed to identify optimal therapeutic strategies and treatment goals in the pediatric population.
Arterial properties in relation to genetic variations in the adducin subunits in a white population.
Resumo:
BACKGROUND: Adducin is a membrane skeleton protein, which consists of either alpha- and beta- or alpha- and gamma-subunits. We investigated whether arterial characteristics might be related to the genes encoding ADD1 (Gly460Trp-rs4961), ADD2 (C1797T-rs4984), and ADD3 (IVS11+386A>G-rs3731566). METHODS: We randomly recruited 1,126 Flemish subjects (mean age, 43.8 years; 50.3% women). Using a wall-tracking ultrasound system, we measured the properties of the carotid, femoral, and brachial arteries. We studied multivariate-adjusted phenotype-genotype associations, using a population- and family-based approach. RESULTS: In single-gene analyses, brachial diameter was 0.15 mm (P = 0.0022) larger, and brachial distensibility and cross-sectional compliance were 1.55 x 10(-3)/kPa (P = 0.013) and 0.017 mm(2)/kPa (P = 0.0029) lower in ADD3 AA than ADD3 GG homozygotes with an additive effect of the G allele. In multiple-gene analyses, the association of brachial diameter and distensibility with the ADD3 G allele occurred only in ADD1 GlyGly homozygotes. Otherwise, the associations between the arterial phenotypes in the three vascular beds and the ADD1 or ADD2 polymorphisms were not significant. In family-based analyses, the multivariate-adjusted heritability was 0.52, 0.38, and 0.30 for brachial diameter, distensibility, and cross-sectional compliance, respectively (P < 0.001). There was no evidence for population stratification (0.07 < or = P < or = 0.96). Transmission of the mutated ADD3 G allele was associated with smaller brachial diameter in 342 informative offspring (-0.12 +/- 0.04 mm; P = 0.0085) and in 209 offspring, who were ADD1 GlyGly homozygotes (-0.14 +/- 0.06 mm; P = 0.018). CONCLUSIONS: In ADD1 GlyGly homozygotes, the properties of the brachial artery are related to the ADD3 (A386G) polymorphism, but the underlying mechanism needs further clarification.
Resumo:
The effect of acute intravenous dopamine (DA) administration at three sequential (but randomized) infusion rates was studied in eight young male volunteers. DA was infused at 2.5, 5, and 10 micrograms.kg-1.min-1. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by means of a computerized indirect calorimeter (blood system). In response to the 5- and 10-micrograms.kg-1.min-1 DA infusion rates, a significant increase (P less than 0.01) in VO2 corresponding to a 6% (range, 3-10) and 15% (range, 12-23) increase, respectively, of preinfusion values was observed. In contrast, at the low dose (2.5 micrograms.kg-1.min-1), DA induced no significant change in VO2. Cardiac output (Qc) increased significantly after the three DA administration rates [19% (range, 0-42), 34% (range, 17-71), and 25% (range, -3 to +47)] for the doses 2.5, 5, and 10 micrograms.-kg-1.min-1, respectively. The increase in O2 delivery (QO2) outweighed VO2 at all administration rates despite the relative drop in QO2 at the maximal DA administration rate. These results indicate that in humans DA improves net O2 supply to tissues proportionally more than it increases VO2 at all doses used in the present study.
Resumo:
The goal of the present study was to examine the viscoelastic properties of the carotid artery in genetically identical rats exposed to similar levels of blood pressure sustained by different mechanisms. Eight-week old male Wistar rats were examined 2 weeks after renal artery clipping (two-kidney, one clip [2K1C] Goldblatt rats, n = 53) or sham operation (n = 49). One half of the 2K1C and sham rats received the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 1.48 mmol/L) in their drinking water for 2 weeks after the surgical procedure. Mean blood pressure increased significantly in the 2K1C-water (182 mm Hg), 2K1C-L-NAME (197 mm Hg), and sham-L-NAME (170 mm Hg) rats compared with the sham-water rats (127 mm Hg). Plasma renin activity was not altered by L-NAME but significantly enhanced after renal artery clipping. A significant and similar increase in the cross-sectional area of the carotid artery was observed in L-NAME and vehicle-treated 2K1C rats. L-NAME per se did not modify cross-sectional area in the sham rats. There was a significant upward shift of the distensibility-pressure curve in the L-NAME- and vehicle-treated 2K1C rats compared with the sham-L-NAME rats. L-NAME treatment did not alter the distensibility-pressure curve in the 2K1C rats. These results demonstrate that the mechanisms responsible for artery wall hypertrophy in renovascular hypertension are accompanied by an increase in arterial distensibility that is not dependent on the synthesis of nitric oxide.
Resumo:
The vascular effects of angiotensin converting enzyme inhibitors are mediated by the inhibition of the dual action of angiotensin converting enzyme (ACE): production of angiotensin II and degradation of bradykinin. The deleterious effect of converting enzyme inhibitors (CEI) on neonatal renal function have been ascribed to the elevated activity of the renin-angiotensin system. In order to clarify the role of bradykinin in the CEI-induced renal dysfunction of the newborn, the effect of perindoprilat was investigated in anesthetized newborn rabbits with intact or inhibited bradykinin B2 receptors. Inulin and PAH clearances were used as indices of GFR and renal plasma flow, respectively. Perindoprilat (20 microg/kg i.v.) caused marked systemic and renal vasodilation, reflected by a fall in blood pressure and renal vascular resistance. GFR decreased, while urine flow rate did not change. Prior inhibition of the B2 receptors by Hoe 140 (300 microg/kg s.c.) did not prevent any of the hemodynamic changes caused by perindoprilat, indicating that bradykinin accumulation does not contribute to the CEI-induced neonatal renal effects. A control group receiving only Hoe 140 revealed that BK maintains postglomerular vasodilation via B2 receptors in basal conditions. Thus, the absence of functional B2 receptors in the newborn was not responsible for the failure of Hoe 140 to prevent the perindoprilat-induced changes. Species- and/or age-related differences in the kinin-metabolism could explain these results, suggesting that in the newborn rabbit other kininases than ACE are mainly responsible for the degradation of bradykinin.
Resumo:
In the present review, microvascular remodelling refers to alterations in the structure of resistance vessels contributing to elevated systemic vascular resistance in hypertension. We start with some historical aspects, underscoring the importance of Folkow's contribution made half a century ago. We then move to some basic concepts on the biomechanics of blood vessels, and explicit the definitions proposed by Mulvany for specific forms of remodelling, especially inward eutrophic and inward hypertrophic. The available evidence for the existence of remodelled resistance vessels in hypertension comes next, with relatively more weight given to human, in comparison with animal data. Mechanisms are discussed. The impact of antihypertensive drug treatment on remodelling is described, again with emphasis on human data. Some details are given on the three studies to date which point to remodelling of subcutaneous resistance arteries as an independent predictor of cardiovascular risk in hypertensive patients. We terminate by considering the potential role of remodelling in the pathogenesis of end-organ damage and in the perpetuation of hypertension.
Resumo:
The key role of intrarenal adenosine in mediating the hypoxemic acute renal insufficiency in newborn rabbits has been well demonstrated using the nonspecific adenosine antagonist theophylline. The present study was designed to define the role of adenosine A1 receptors during systemic hypoxemia by using the specific A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Renal function parameters were assessed in 31 anesthetized and mechanically ventilated newborn rabbits. In normoxia, DPCPX infusion induced a significant increase in diuresis (+44%) and GFR (+19%), despite a significant decrease in renal blood flow (RBF) (-22%) and an increase in renal vascular resistance (RVR) (+37%). In hypoxemic conditions, diuresis (-19%), GFR (-26%), and RBF (-35%) were decreased, whereas RVR increased (+33%). DPCPX administration hindered the hypoxemia-induced decrease in GFR and diuresis. However, RBF was still significantly decreased (-27%), whereas RVR increased (+22%). In all groups, the filtration fraction increased significantly. The overall results support the hypothesis that, in physiologic conditions, intrarenal adenosine plays a key role in regulating glomerular filtration in the neonatal period through preferential A1-mediated afferent vasoconstriction. During a hypoxemic stress, the A1-specific antagonist DPCPX only partially prevented the hypoxemia-induced changes, as illustrated by the elevated RVR and drop in RBF. These findings imply that the contribution of intrarenal adenosine to the acute adverse effects of hypoxemia might not be solely mediated via the A1 receptor.
Resumo:
BACKGROUND: A rapid decrease of serum potassium concentrations during haemodialysis produces a significant increase in blood pressure parameters at the end of the session, even if effects on intra-dialysis pressure are not seen. Paradoxically, in animal models potassium is a vasodilator and decreases myocardial contractility. The purpose of this trial is to study the precise haemodynamic consequences induced by acute changes in potassium concentration during haemodialysis. METHODS: In 24 patients, 288 dialysis sessions, using a randomised single blind crossover design, we compared six dialysate sequences with different potassium profiles. The dialysis sessions were divided into 3 tertiles, casually modulating potassium concentration in the dialysate between the value normally used K and the two cut-off points K+1 and K-1 mmol/l. Haemodynamics were evaluated in a non-invasive manner using a finger beat-to-beat monitor. RESULTS: Comparing K-1 and K+1, differences were found within the tertiles regarding systolic (+5.3, +6.6, +2.3 mmHg, p < 0.05, < 0.05, ns) and mean blood pressure (+4.3, +6.4, -0.5 mmHg, p < 0.01, < 0.01, ns), as well as peripheral resistance (+212, +253, -4 dyne.sec.cm-5, p < 0.05, < 0.05, ns). The stroke volume showed a non-statistically-significant inverse trend (-3.1, -5.2, -0.2 ml). 18 hypotension episodes were recorded during the course of the study. 72% with K-1, 11% with K and 17% with K+1 (p < 0.01 for comparison K-1 vs. K and K-1 vs. K+1). CONCLUSIONS: A rapid decrease in the concentration of serum potassium during the initial stage of the dialysis-obtained by reducing the concentration of potassium in the dialysate-translated into a decrease of systolic and mean blood pressure mediated by a decrease in peripheral resistance. The risk of intra-dialysis hypotension inversely correlates to the potassium concentration in the dialysate. TRIAL REGISTRATION NUMBER: NCT01224314.
Resumo:
OBJECTIVES: The aim of this study was to evaluate right ventricular (RV) and left ventricular function and pulmonary circulation in chronic mountain sickness (CMS) patients with rest and stress echocardiography compared with healthy high-altitude (HA) dwellers. BACKGROUND: CMS or Monge's disease is defined by excessive erythrocytosis (hemoglobin >21 g/dl in males, 19 g/dl in females) and severe hypoxemia. In some cases, a moderate or severe increase in pulmonary pressure is present, suggesting a similar pathogenesis of pulmonary hypertension. METHODS: In La Paz (Bolivia, 3,600 m sea level), 46 CMS patients and 40 HA dwellers of similar age were evaluated at rest and during semisupine bicycle exercise. Pulmonary artery pressure (PAP), pulmonary vascular resistance, and cardiac function were estimated by Doppler echocardiography. RESULTS: Compared with HA dwellers, CMS patients showed RV dilation at rest (RV mid diameter: 36 ± 5 mm vs. 32 ± 4 mm, CMS vs. HA, p = 0.001) and reduced RV fractional area change both at rest (35 ± 9% vs. 43 ± 9%, p = 0.002) and during exercise (36 ± 9% vs. 43 ± 8%, CMS vs. HA, p = 0.005). The RV systolic longitudinal function (RV-S') decreased in CMS patients, whereas it increased in the control patients (p < 0.0001) at peak stress. The RV end-systolic pressure-area relationship, a load independent surrogate of RV contractility, was similar in CMS patients and HA dwellers with a significant increase in systolic PAP and pulmonary vascular resistance in CMS patients (systolic PAP: 50 ± 12 mm Hg vs. 38 ± 8 mm Hg, CMS vs. HA, p < 0.0001; pulmonary vascular resistance: 2.9 ± 1 mm Hg/min/l vs. 2.2 ± 1 mm Hg/min/l, p = 0.03). Both groups showed comparable systolic and diastolic left ventricular function both at rest and during stress. CONCLUSIONS: Comparable RV contractile reserve in CMS and HA suggests that the lower resting values of RV function in CMS may represent a physiological adaptation to chronic hypoxic conditions rather than impaired RV function. (Chronic Mountain Sickness, Systemic Vascular Function [CMS]; NCT01182792).
Resumo:
In early childhood, nonsteroidal anti-inflammatory drugs are mainly used to either prevent or treat premature labor of the mother and patent ductus arteriosus of the newborn infant. The most frequently used prostaglandin-synthesis inhibitor is indomethacin. Fetuses exposed to indomethacin in utero have been born with renal developmental defects, and in both the unborn child and the term and premature newborn this drug may compromise renal glomerular function. The latter has in the past also been observed when i.v. indomethacin or i.v. acetylsalicylic acid (aspirin) were administered to newborn rabbits. The present experiments were designed to evaluate whether ibuprofen has less renal side effects than indomethacin, as claimed. Three groups of anesthetized, ventilated, normoxemic neonatal rabbits were infused with increasing doses of ibuprofen (0.02, 0.2, 2.0 mg/kg body weight) and the following renal parameters were measured: urine volume, urinary sodium excretion, GFR, and renal plasma flow. Renal blood flow, filtration fraction, and the renal vascular resistance were calculated according to standard formulae. Intravenous ibuprofen caused a dose-dependent, significant reduction in urine volume, GFR, and renal blood flow with a fall in filtration fraction in the animals receiving the highest dose of ibuprofen (2 mg/kg body weight). There was a very steep rise in renal vascular resistance. Urinary sodium excretion decreased. These experiments in neonatal rabbits clearly show that acute i.v. doses of ibuprofen also have significant renal hemodynamic and functional side effects, not less than seen previously with indomethacin.
Resumo:
Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.
Resumo:
Euglycemic hyperinsulinemia stimulates both sympathetic nerve activity and blood flow to skeletal muscle, but the mechanism is unknown. Possible mechanisms that may stimulate muscle blood flow include neural, humoral, or metabolic effects of insulin. To determine whether such insulin-induced vasodilation is modulated by stimulation of adrenergic or cholinergic mechanisms, we obtained, in eight healthy lean subjects, plethysmographic measurements of calf blood flow during 3 h of hyperinsulinemic (1 mU.kg-1.min-1) euglycemic clamp performed alone or during concomitant beta-adrenergic (propranolol infusion), cholinergic (atropine infusion), or alpha-adrenergic (prazosin administration) blockade. Euglycemic hyperinsulinemia alone increased calf blood flow by 38 +/- 10% (means +/- SE) and decreased vascular resistance by 27 +/- 4% (P < 0.01). The principal new observation is that these insulin-induced vasodilatory responses were not attenuated by concomitant propranolol or atropine infusion, nor were they potentiated by prazosin administration. In conclusion, these findings provide evidence that during euglycemic hyperinsulinemia in lean healthy humans stimulation of muscle blood flow is not mediated primarily by beta-adrenergic or cholinergic mechanisms. Furthermore, alpha-adrenergic mechanisms do not markedly limit insulin-induced stimulation of muscle blood flow.
Resumo:
In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O(2)) or chronic hypoxia with one episode/day of 1-hr normoxic aeration (CH+A), with normoxia (N) as the control. Second, isolated hearts were Langendorff perfused under hypoxia (10% O(2), 30 min) and reoxygenated (94% O(2), 30 min) with or without 3 microM glibenclamide (nonselective K(+)(ATP) channel-blocker) or 100 microM diazoxide (selective mitochondrial K(+)(ATP) channel-opener). Blood gasses, hemoglobin concentration, and plasma malondialdehyde were similar in CH and CH+A and in both different from normoxic (P < 0.01), body weight gain and plasma nitrate/nitrite were higher in CH+A than CH (P < 0.01), whereas apoptosis (number of TUNEL-positive nuclei) was less in CH+A than CH (P < 0.05). During in vitro hypoxia, the efficiency (ratio of ATP production/pressure x rate product) was the same in all groups and diazoxide had no measurable effects on myocardial performance, whereas glibenclamide increased end-diastolic pressure more in N and CH than in CH+A hearts (P < 0.05). During reoxgenation, efficiency was markedly less in CH with respect to N and CH+A (P < 0.0001), and ratex pressure product remained lower in CH than N and CH+A hearts (P < 0.001), but glibenclamide or diazoxide abolished this difference. Glibenclamide, but not diazoxide, decreased vascular resistance in N and CH (P < 0.005 and < 0.001) without changes in CH+A. We hypothesize that cardioprotection in chronically hypoxic hearts derive from cell depolarization by sarcolemmal K(+)(ATP) blockade or from preservation of oxidative phosphorylation efficiency (ATP turnover/myocardial performance) by mitochondrial K(+)(ATP) opening. Therefore K(+)(ATP) channels are involved in the deleterious effects of chronic hypoxia and in the cardioprotection elicited when chronic hypoxia is interrupted with short normoxic aeration episodes.