842 resultados para Urinary glucose
Resumo:
Dyslipidaemia, a major risk factor of cardiovascular disease (CVD), is prevalent not only in diabetic patients but also in individuals with impaired glucose tolerance (IGT) or impaired fasting glucose (IFG). The aims of this study were: 1) to investigate lipid levels in relation to glucose in European (Study I) and Asian (Study II) populations without a prior history of diabetes; 2) to study the ethnic difference in lipid profiles controlling for glucose levels (Study III); 3) to estimate the relative risk for cardiovascular mortality (Study IV) and morbidity (Study V) associated with dyslipidaemia in individuals with different glucose tolerance status. Data of 15 European cohorts with 19 476 subjects (I and III) and 13 Asian cohorts with 19 763 individuals (II and III) from 21 countries aged 25-89 years, without a prior history of diabetes at enrollment, representing Asian Indian, Chinese, European, Japanese and Mauritian Indian, were compared. The lipid-CVD relationship was studied in 14 European cohorts of 17 763 men and women which provided with follow-up data on vital status, with 871 CVD deaths occurred during the average 10-year follow-up (IV). The impact of dyslipidaemia on incidence of coronary heart disease (CHD) in persons with different glucose categories (V) was further evaluated in 6 European studies, with 9087 individuals free of CHD at baseline and 457 developed CHD during follow-up. Z-scores of each lipid component were used in the data analysis (I, II, IV and V) to reduce the differences in methodology between studies. Analyses of cardiovascular mortality and morbidity were performed using Cox proportional hazards regression analysis adjusting for potential confounding factors. Within each glucose category, fasting plasma glucose (FPG) levels were correlated with increasing levels of triglycerides (TG), total cholesterol (TC), TC to high-density lipoprotein (HDL) ratio and non-HDL cholesterol (non-HDL-C) (p<0.05 in most of the ethnic groups) and inversely associated with HDL-C (p<0.05 in some, but not all, of the populations). The association of lipids with 2-h plasma glucose (2hPG) followed a similar pattern as that for the FPG, except the stronger association of HDL-C with 2hPG. Compared with Central & Northern (C & N) Europeans, multivariable adjusted odd ratios (95% CIs) for having low HDL-C were 4.74 (4.19-5.37), 5.05 (3.88-6.56), 3.07 (2.15-4.40) and 2.37 (1.67-3.35) in Asian Indian men but 0.12 (0.09-0.16), 0.07 (0.04-0.13), 0.11 (0.07-0.20) and 0.16 (0.08-0.32) in Chinese men who had normoglycaemia, prediabetes, undiagnosed and diagnosed diabetes, respectively. Similar results were obtained for women. The prevalence of low HDL-C remained higher in Asian Indians than in others even in individuals with LDL-C < 3 mmol/l. Dyslipidaemia was associated with increased CVD mortality or CHD incidence in individuals with isolated fasting hyperglycaemia or IFG, but not in those with isolated post-load hyperglycaemia or IGT. In conclusion, hyperglycaemia is associated with adverse lipid profiles in Europeans and Asians without a prior history of diabetes. There are distinct patterns of lipid profiles associated with ethnicity regardless of the glucose levels, suggesting that ethnic-specific strategies and guidelines on risk assessment and prevention of CVD are required. Dyslipidaemia predicts CVD in either diabetic or non-diabetic individuals defined based on the fasting glucose criteria, but not on the 2-hour criteria. The findings may imply considering different management strategies in people with fasting or post-load hyperglycaemia.
Resumo:
Theory of developmental origins of adult health and disease proposes that experiences during critical periods of early development may have consequences on health throughout a lifespan. Thesis studies aimed to characterize associations between early growth and some components of the metabolic syndrome cluster. Participants belong to two epidemiological cohorts with data on birth measurements and, for the younger cohort, on serial recordings of weight and height during childhood. They were born as singletons between 1924-33 and 1934-44 in the Helsinki University Central Hospital, and 500 and 2003 of them, respectively, attended clinical studies at the age of 65-75 and 56-70 years, respectively. In the 65-75 year old men and women, the well-known inverse relationship between birth weight and systolic blood pressure (SBP) was confined to people who had established hypertension. Among them a 1-kg increase in birth weight was associated with a 6.4-mmHg (95% CI: 1.0 to 11.9) decrease in SBP. This relationship was further confined to people with the prevailing Pro12Pro polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPARγ2) gene. People with low birth weight were more likely to receive angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers (ACEI/ARB, p=0.03), and, again, this relationship was confined to the carriers of the Pro12Pro (p=0.01 for interaction). These results suggest that the inverse association between birth weight and systolic BP becomes focused in hypertensive people because pathological features of BP regulation, associated with slow fetal growth, become self-perpetuating in adult life. Insulin resistance of the Pro12Pro carriers with low birth weight may interact with the renin-angiotensin system leading to raised BP levels. Habitual physical activity protected men and women who were small at birth, and thus at increased risk for the development of type 2 diabetes, against glucose intolerance more strongly. Among subjects with birth weight ≤3000 g, the odds ratio (OR) for glucose intolerance was 5.2 (95% CI: 2.1 to 13) in those who exercised less than 3 times per week compared to regular exercisers; in those who scored their exercise light compared with moderate exercisers (defined as comparable to brisk walking) the OR was 3.5 (1.5 to 8.2). In the 56-70 year old men a 1 kg increase in birth weight corresponded to a 4.1 kg (95% CI: 3.1 to 5.1) and in women to a 2.9 kg (2.1 to 3.6) increase in adult lean mass. Rapid gain in body mass index (BMI), i.e. crossing from an original BMI percentile to a higher one, before the age of 2 years increased adult lean mass index (LMI, lean mass/height squared) without excess fat accumulation whereas rapid gain in BMI during later childhood, despite the concurrent rise in LMI, resulted in a relatively higher increase in adult body fat mass. These findings illustrate how genes, the environment and their interactions, early growth patterns, and adult lifestyle modify adult health risks which originate from early life.
Resumo:
Working on the serotonin (5-hydroxytryptamine, 5-HT) 5-HT2B receptor since several years, we have read with high interest the review by Hertz et al. (2015). Previous studies from our group demonstrated that a direct injection in mouse raphe nucleus of the 5-HT2B agonist BW723C86 has the ability to increase extracellular levels of serotonin, which can be blocked by the selective 5-HT2B receptor antagonist RS127445 (Doly et al., 2008, 2009). We also reported that an acute injection of paroxetine 2 mg/kg in mice knocked out for the 5-HT2B receptor gene or in wild type mice injected with RS127445 (0.5 mg/kg) triggers a strong reduction in extracellular accumulation of 5-HT in hippocampus (Diaz et al., 2012). Following these observations, we showed that acute and chronic BW723C86 injection (3 mg/kg) can mimic the fluoxetine (3 mg/kg) and paroxetine (1 mg/kg) behavioral and biochemical antidepressant effects in mice (Diaz and Maroteaux, 2011; Diaz et al., 2012)...
Resumo:
Group B streptococcus (GBS), also known as Streptococcus agalactiae is a Gram-positive, β-hemolytic, chain-forming bacterium and a commensal within the genital tract flora in approximately 25% of healthy adult women (Campbell et al., 2000). The organism is a leading cause of serious infection in newborns, pregnant women, and older persons with chronic medical illness (Baker et al., Edwards&Baker, 2005). In neonates GBS infection most commonly causes pneumonia, meningitis, and sepsis. In addition to maternal cervicovaginal colonization and neonatal infection that can result from vertical transmission of GBS from mothers to their infants, the bacterium can also cause urinary tract infection (UTI). The spectrum of GBS UTI includes asymptomatic bacteriuria (ABU), cystitis, pyelonephritis, urethritis, and urosepsis (Bronsema et al., 1993, Edwards&Baker, 2005, Farley et al., 1993, Lefevre et al., 1991, McKenna et al., 2003, Munoz et al., 1992, Ulett et al., 2009). GBS ABU is particularly common among pregnant women, although those most at risk for cystitis due to GBS appear to be elderly individuals (Edwards&Baker, 2005, Falagas et al., 2006, Muller et al., 2006). In addition to acute and asymptomatic UTI other invasive diseases caused by GBS infection include skin infections, bacteraemia, pneumonia, arthritis, and endocarditis (Liston et al., 1979, Patil & Martin, 2010, Tissi et al., 1997, Trivalle et al., 1998). Thus, GBS is considered unique in terms of its ability to cause a spectrum of diseases in newborns and adult humans and its ability to colonize the genital tract of healthy women in a commensal-type manner...
Resumo:
Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.
Resumo:
In recent years, there has been intense interest in the potential health benefits of dietary derived plant polyphenols and antioxidants. A new variety of Prunus salicina, Queen Garnet plum (QGP), was developed as a high anthocyanin, high antioxidant plum, in a Queensland Government breeding program. Following consumption of 400 mL QGP juice (QGPJ; 1,117 mg anthocyanins) by two healthy male subjects, QGP anthocyanins (cyanidin-3-glucoside and cyanidin-3-rutinoside) were excreted mainly as methylated and glucuronidated metabolites in urine (0.5% of the ingested dose within 24 h). Furthermore, QGPJ intake resulted in a threefold increase in hippuric acid excretion (potential biomarker for total polyphenols intake and metabolite), an increased urinary antioxidant capacity and a decreased malondialdehyde excretion (biomarker for oxidative stress) within 24 h as compared with the polyphenol-/antioxidant-free control. Results from this pilot study suggest that metabolites, and not the native QGP anthocyanins/polyphenols, are most likely the bioactive compounds in vivo.
Resumo:
C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).
Resumo:
Physical entrapment was used as an approach to achieve thermal stabilization of enzymes. The ti values for the thermoinactivation of glucose oxidase and glucoamylase were increased several-fold by their entrapment in polyacrylamide gels. In polyacrylate gels the individual enzymes behaved differently, probably owing to microenvironmental effects arising by the polyelectrolyte nature of the carrier.
Resumo:
Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.
Resumo:
During preimplantation development, embryos of many species are known to express up to five isoforms of the facilitative glucose transporter proteins (GLUT). Development of hamster blastocysts is inhibited by glucose. We therefore investigated GLUT isoform and insulin receptor (IR) expression in hamster preimplantation embryos cultured in glucose-free medium from the 8-cell stage onwards. We show that GLUT1, 3 and 8 mRNA are constitutively expressed from the 8-cell to the blastocyst stage. The IR is expressed from the morula stage onwards. Messenger RNA of the insulin-responsive GLUT4 was not detected at any stage. GLUT1 and 3 were localised by immunocytochemistry. GLUT1 was expressed in both embryoblast and trophoblast, in the latter, mainly in basal and lateral membranes directed towards the blastocoel. and embryoblast. GLUT3 was exclusively localised in the apical. membrane of trophoblast cells. We show that hamster preimplantation embryos express several GLUT isoforms thus closely resembling embryos of other mammalian species. Despite endogenous IR expression, the insulin-sensitive isoform GLUT4 was not expressed, indicating that the insulin-mediated glucose uptake known from classical insulin target cells may not be relevant for hamster blastocysts.
Resumo:
Biosensors have gained immense acceptance in the field of medical diagnostics, besides environmental, food safety and biodefence applications due to its attributes of real-time and rapid response. This synergistic combination of biotechnology and microelectronics comprises a biological recognition element coupled with a compatible transducer device. Diabetes is a disease of major concern since the ratio of world population suffering from it is increasing at an alarming rate and therefore the need for development of accurate and stable glucose biosensors is evident. There are many commercial glucose biosensors available yet some limitations need attention. This review presents a detailed account of the polypyrrole based amperometric glucose biosensors. The polymer polypyrrole is used extensively as a matrix for immobilization of glucose oxidase enzyme owing to its favourable features such as stability under ambient conditions, conductivity that allows it to be used as an electron relay, ability to be polymerized under neutral and aqueous mild conditions, and more. The simple one-step electrodeposition on the electrode surface allows easy entrapment of the enzyme. The review is structured into three categories (a) the first-stage biosensors: which report the studies from the inception of use of polypyrrole in glucose biosensors during which time the role of the polymer and the use of mediators was established. This period saw extensive work by two separate groups of Schuhmann and Koopal who contributed a great deal in understanding the electron transfer pathways in polypyrrole based glucose biosensors, (b) the second-stage biosensors: which highlight the shift of polypyrrole from a conventional matrix to composite matrices with extensive use of mediators focused at improving the selectivity of response, and (c) third-stage biosensors: the remarkable properties of nanoparticles and carbon nanotubes and their outstanding ability to mediate electrontransfers have seen their indispensable use in conjugation with polypyrrole for development of glucose biosensors with improved sensitivity and stability characteristics which is accounted in the review, which thus traces the evolution of polypyrrole from a conventional matrix, to composites and thence to the form of nanotube arrays, with the objective of addressing the vital issue of diabetes management through the development of stable and reliable glucose biosensors.