970 resultados para Trench coat
Resumo:
Avalanche multiplication has been one of the major destructive failure mechanisms in IGBTs; in order to avoid operating an IGBT under abnormal conditions, it is desirable to develop peripheral protecting circuits monolithically integrated without compromising the operation and performance of the IGBT. In this paper, a monolithically integrated avalanche diode (D av) for 600V Trench IGBT over-voltage protection is proposed. The mix-mode transient simulation proves the clamping capability of the D av when the IGBT is experiencing over-voltage stress in unclamped inductive switching (UIS) test. The spread of avalanche energy, which prevents hot-spot formation, through the help of the avalanche diode feeding back a large fraction of the avalanche current to a gate resistance (R G) is also explained. © 2011 IEEE.
Resumo:
A steady-state, physically-based analytical model for the Trench Insulated Gate Bipolar Transistor which accounts for a combined PIN diode - PNP transistor carrier dynamics is proposed. Previous models (i.e. PIN model and PNP transistor model) cannot account properly for the carrier dynamics in Trench IGBT since neither the PNP transistor nor the PIN diode effect can be neglected. An optimized Trench IGBT with a large ratio between the accumulation layer and the cell size leads to substantially improved on-state characteristics, which makes the Trench IGBT potentially the most attractive device in the area of high voltage fast switching devices.
Resumo:
A low specific on-resistance (R-{{\rm on}, {\rm sp}}) integrable silicon-on-insulator (SOI) MOSFET is proposed, and its mechanism is investigated by simulation. The SOI MOSFET features double trenches and dual gates (DTDG SOI): an oxide trench in the drift region, a buried gate inset in the oxide trench, and another trench gate (TG) extended to a buried oxide layer. First, the dual gates form dual conduction channels, and the extended gate widens the vertical conduction area; both of which sharply reduce R-{{\rm on}, {\rm sp}}. Second, the oxide trench folds the drift region in the vertical direction, resulting in a reduced device pitch and R-{{\rm on}, {\rm sp}}. Third, the oxide trench causes multidirectional depletion. This not only enhances the reduced surface field effect and thus reshapes the electric field distribution but also increases the drift doping concentration, leading to a reduced R-{{\rm on}, {\rm sp}} and an improved breakdown voltage (BV). Compared with a conventional SOI lateral Double-diffused metal oxide semiconductor (LDMOS), the DTDG MOSFET increases BV from 39 to 92 V at the same cell pitch or decreases R-{{\rm on}, { \rm sp}} by 77% at the same BV by simulation. Finally, the TG extended synchronously acts as an isolation trench between the high/low-voltage regions in a high-voltage integrated circuit, saving the chip area and simplifying the isolation process. © 2006 IEEE.
Resumo:
Gene mapping of a mouse coat mutation has been investigated. First, 100 10-bp random primers were used to amplify DNA, but the mutation could not be located by this method because there were no correlation between the amplified products and coat phenotypes. Second, by using Idh1, Car2, Mup1, Pgb1, Hbb, Es10, Es1, Mod1, Gdc1, Ce2, Es3 as genetic markers, linkage test crosses (two-point test) consisting of intercrossing uncovered BALB/c mice (homozygotes) to CBA/N and C57BL/6 mice with normal hair and backcrossing the heterozygotes of the F1 to the uncovered BALB/c mice were made. It was soon evident that the mutation was linked to Es3 on chromosome 11. Furthermore, three-point test was made by using Es3 and D11Mit8 (a microsatellite DNA) as genetic markers. The result showed that the mutation was linked to Es3 with the percentage recombination of (7.89 +/- 2.19)%, and linked to D11Mit8 with the percentage recombination of (26.38 +/- 3.57)%. The percentage recombination between Es3 and D11Mit8 was (32.90 +/- 3.81)%. The mutation was named Uncovered, with the symbol Uncv. According to the recombinations, the loci order was D11Mit8-26.30 +/- 3.57- Uncv-7.89 +/- 2.19-Es3. From the location on the chromosome, it was concluded that the mutation was a new mutation which affected the skin and hair structure of mouse. The Uncv has entered MGD (Mouse Genome Database).
Resumo:
This paper presents a comprehensive theoretical study of the Trench Insulated Gate Bipolar Transistors (TIGBT). Specific physical and geometrical effects, such as the accumulation layer injection, increased channel density, increased channel charge and transversal electric field modulation are discussed. The potential advantages of the Trench IGBT over its conventional planar variant are highlighted. It is concluded that the Trench IGBT is one of the most promising structures in the area of high voltage MOS-controllable switching devices.
Resumo:
An advanced 700V Smart Trench IGBT with monolithically integrated over-voltage and over-current protecting circuits is presented in this paper. The proposed Smart IGBT comprises a sense IGBT, a low voltage lateral n-channel MOSFET (M 1), an avalanche diode (D av), and poly-crystalline Zener diodes (ZD) and resistor (R poly). Mix-mode transient simulations with MEDICI have proven the functionalities of the protecting circuits when the device is operating under abnormal conditions, such as Unclamped Inductive Switching (UIS) and Short Circuit (SC) condition. A Trench IGBT process is used to fabricate this device with total 11 masks including one metal mask only. The characterizations of the fabricated device exhibit the clamping capability of the avalanche diode and voltage pull-down ability of the MOSFET. © 2012 IEEE.
Resumo:
In this paper we propose novel designs that enhance the plasma concentration across the Field Stop IGBT. The "p-ring" and the "point-injection" type devices exhibit increased cathode side conductivity modulation which results in impressive IGBT performance improvement. These designs are shown to be extremely effective in lowering the on-state losses without compromising the switching performance or the breakdown rating. For the same switching losses we can achieve more than 20% reduction of the on state energy losses compared to the conventional FS IGBT. © 2012 IEEE.
Resumo:
The structural and optical properties of trench defects, which are poorly understood yet commonly occurring defects observed on the surfaces of InGaN multiple quantum wells (MQW), are reported. These defects comprise near-circular trenches which enclose areas of MQW which give rise to a red shift in peak photoluminescence emission and a change in cathodoluminescence intensity with respect to the surrounding material. Atomic force microscopy shows that the height of trench-enclosed areas differs from that of the surrounding quantum well structure, and that trenches are unrelated to the commonly observed V-defects in InGaN films, despite being occasionally intersected by them. Cross-sectional electron microscopy analysis of trenches with raised centres suggests that the red shift in the observed cathodoluminescence peak emission may be due to the quantum wells being thicker in the trench-enclosed regions than in the surrounding quantum well area. The mechanism of trench formation and its implication for the control of the emission properties of light-emitting diodes is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with cathodoluminescence (CL) were performed on exactly the same defects in a blue-emitting InGaN/GaN multiple quantum well (QW) sample enabling the direct correlation of the morphology of an individual defect with its emission properties. The defects in question are observed in AFM and SEM as a trench partially or fully enclosing a region of the QW having altered emission properties. Their sub-surface structure has previously been shown to consist of a basal plane stacking fault (BSF) in the plane of the QW stack, and a stacking mismatch boundary (SMB) which opens up into a trench at the sample surface. In CL, the material enclosed by the trench may emit more or less intensely than the surrounding material, but always exhibits a redshift relative to the surrounding material. A strong correlation exists between the width of the trench and both the redshift and the intensity ratio, with the widest trenches surrounding regions which exhibit the brightest and most redshifted emission. Based on studies of the evolution of the trench width with the number of QWs from four additional MQW samples, we conclude that in order for a trench defect to emit intense, strongly redshifted light, the BSF must be formed in the early stages of the growth of the QW stack. The data suggest that the SMB may act as a non-radiative recombination center. © 2013 American Institute of Physics.
Resumo:
OKINAWA TROUGH; BASIN
Resumo:
The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPgammaS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.
Resumo:
Culloden (BBC, 1964) The Great War (BBC, 1964) 1914-18 (BBC/KCET, 1996) Haig: the Unknown Soldier (BBC, 1996) Veterans: the Last Survivors of the Great War (BBC, 1998) 1900s House (Channel 4, 1999) The Western Front (BBC, 1999) History of Britain (BBC, 2000) 1940s House (Channel 4, 2001) The Ship (BBC, 2002) Surviving the Iron Age (BBC, 2001) The Trench (BBC, 2002) Frontier House (Channel 4, 2002) Lad's Army (BBC, 2002) Edwardian Country House (Channel 4, 2002) Spitfire Ace (Channel 4, 2003) World War One in Colour (Channel 5, 2003) 1914: the War Revolution (BBC, 2003) The First World War (Channel 4, 2003) Dunkirk (BBC, 2004) Dunkirk: The Soldier's Story (BBC, 2004) D-Day to Berlin (BBC, 2004) Bad Lad's Army (ITV, 2004) Destination D-Day: Raw Recruits (BBC, 2004) Bomber Crew (Channel 4, 2004) Battlefield Britain (BBC, 2004) The Last Battle (ARTE/ZDF, 2005) Who Do You Think You Are? (BBC, 2004, 2006) The Somme (Channel 4, 2005) [From the Publisher]
Resumo:
Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.
Resumo:
This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area. (c) 2007 Elsevier Ltd. All rights reserved.