716 resultados para Trees (mathematics)
Resumo:
This paper reports on a mathematics education research project centred on teachers’ pedagogical practices and capacity to assess Indigenous Australian students in a culture-fair manner. The project has been funded by the Australian Research Council Linkage program and is being conducted in seven Catholic and Independent primary schools in north Queensland. Our Industry Partners are Catholic Education and the Association of Independent Schools, Queensland. The study aims to provide greater understanding about how to build more equitable assessment practices to address the issue of underperforming Aboriginal and Torres Strait Islander (ATSI) students in regional and remote Australia. The goal is to identify ways forward by attending to culture-fair assessment practice. The research is exploring the attitudes, beliefs and responses of Indigenous students to assessment in the context of mathematics learning with particular focus on teacher knowledge in these educational settings in relation to the design of assessment tasks that are authentic and engaging for these students in an accountability context. This approach highlights how teachers need to distinguish the ‘funds of knowledge’ (González, Moll, Floyd Tenery, Rivera, Rendón, Gonzales & Amanti, 2008) that Indigenous students draw on and how teachers need to be culturally responsive in their pedagogy to open up curriculum and assessment practice to allow for different ways of knowing and being
Resumo:
Engaging and motivating students in mathematics lessons can be challenging. The traditional approach of chalk and talk can sometimes be problematic. The new generation of educational robotics has the potential to not only motivate students but also enable teachers to demonstrate concepts in mathematics by connecting concepts with the real world. Robotics hardware and the software are becoming increasing more user-friendly and as a consequence they can be blended in with classroom activities with greater ease. Using robotics in suitably designed activities promotes a constructivist learning environment and enables students to engage in higher order thinking through hands-on problem solving. Teamwork and collaborative learning are also enhanced through the use of this technology. This paper discusses a model for teaching concepts in mathematics in middle year classrooms. It will also highlight some of the benefits and challenges of using robotics in the learning environment.
Resumo:
We present the findings of a study into the implementation of explicitly criterion- referenced assessment in undergraduate courses in mathematics. We discuss students' concepts of criterion referencing and also the various interpretations that this concept has among mathematics educators. Our primary goal was to move towards a classification of criterion referencing models in quantitative courses. A secondary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. The data and feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, it did not alter the way the actually approached the assessment activity.
Resumo:
Direct instruction, an approach that is becoming familiar to Queensland schools that have high Aboriginal and Torres Strait Islander populations, has been gaining substantial political and popular support in the United States of America [USA], England and Australia. Recent examples include the No Child Left Behind policy in the USA, the British National Numeracy Strategy and in Australia, Effective Third Wave Intervention Strategies. Direct instruction, stems directly from the model created in the 1960s under a Project Follow Through grant. It has been defined as a comprehensive system of education involving all aspects of instruction. Now in its third decade of influencing curriculum, instruction and research, direct instruction is also into its third decade of controversy because of its focus on explicit and highly directed instruction for learning. Characteristics of direct instruction are critiqued and discussed to identify implications for teaching and learning for Indigenous students.
Resumo:
In this paper, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society (Kirschenman and Brenner 2010)d. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of mathematics engineering curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour, and the effectiveness of problem solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
Resumo:
Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.
Resumo:
This chapter examines how a change in school leadership can successfully address competencies in complex situations and thus create a positive learning environment in which Indigenous students can excel in their learning rather than accept a culture that inhibits school improvement. Mathematics has long been an area that has failed to assist Indigenous students in improving their learning outcomes, as it is a Eurocentric subject (Rothbaum, Weisz, Pott, Miyake & Morelli, 2000, De Plevitz, 2007) and does not contextualize pedagogy with Indigenous culture and perspectives (Matthews, Cooper & Baturo, 2007). The chapter explores the work of a team of Indigenous and non-Indigenous academics from the YuMi Deadly Centre who are turning the tide on improving Indigenous mathematical outcomes in schools and in communities with high numbers of Aboriginal and Torres Strait Islander students.
Resumo:
We present new expected risk bounds for binary and multiclass prediction, and resolve several recent conjectures on sample compressibility due to Kuzmin and Warmuth. By exploiting the combinatorial structure of concept class F, Haussler et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy. The key step in their proof is a d = VC(F) bound on the graph density of a subgraph of the hypercube—oneinclusion graph. The first main result of this paper is a density bound of n [n−1 <=d-1]/[n <=d] < d, which positively resolves a conjecture of Kuzmin and Warmuth relating to their unlabeled Peeling compression scheme and also leads to an improved one-inclusion mistake bound. The proof uses a new form of VC-invariant shifting and a group-theoretic symmetrization. Our second main result is an algebraic topological property of maximum classes of VC-dimension d as being d contractible simplicial complexes, extending the well-known characterization that d = 1 maximum classes are trees. We negatively resolve a minimum degree conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of correctness for Peeling—that every class has one-inclusion minimum degree at most its VCdimension. Our final main result is a k-class analogue of the d/n mistake bound, replacing the VC-dimension by the Pollard pseudo-dimension and the one-inclusion strategy by its natural hypergraph generalization. This result improves on known PAC-based expected risk bounds by a factor of O(logn) and is shown to be optimal up to an O(logk) factor. The combinatorial technique of shifting takes a central role in understanding the one-inclusion (hyper)graph and is a running theme throughout.
Resumo:
This paper discusses women’s involvement in their children’s mathematics education. It does, where possible, focus Torres Strait Islander women who share the aspirations of Aborginal communities around Australia. That is, they are keen for their children to receive an education that provides them with opportunities for their present and future lives. They are also keen to have their cultures’ child learning practices recognised and respected within mainstream education. This recognition has some way to go with the language of instruction in schools written to English conventions, decontextualised and disconnected to the students’ culture, Community and home language.
Resumo:
It is generally agreed that if authentic teacher change is to occur then the tacit knowledge about how and why they act in certain ways in the classroom be accessed and reflected upon. While critical reflection can and often is an individual experience there is evidence to suggest that teachers are more likely to engage in the process when it is approached in a collegial manner; that is, when other teachers are involved in and engaged with the same process. Teachers do not enact their profession in isolation but rather exist within a wider community of teachers. An outside facilitator can also play an active and important role in achieving lasting teacher change. According to Stein and Brown (1997) “an important ingredient in socially based learning is that graduations of expertise and experience exist when teachers collaborate with each other or outside experts” (p. 155). To assist in the effective professional development of teachers, outside facilitators, when used, need to provide “a dynamic energy producing interactive experience in which participants examine and explore the complex components of teaching” (Bolster, 1995, p. 193). They also need to establish rapport with the participating teachers that is built on trust and competence (Hyde, Ormiston, & Hyde, 1994). For this to occur, professional development involving teachers and outside facilitators or researchers should not be a one-off event but an ongoing process of engagement that enables both the energy and trust required to develop. Successful professional development activities are therefore collaborative, relevant and provide individual, specialised attention to the teachers concerned. The project reported here aimed to provide professional development to two Year 3 teachers to enhance their teaching of a new mathematics content area, mental computation. This was achieved through the teachers collaborating with a researcher to design an instructional program for mental computation that drew on theory and research in the field.
Resumo:
Worldwide, there is considerable attention to providing a supportive mathematics learning environment for young children because attitude formation and achievement in these early years of schooling have a lifelong impact. Key influences on young children during these early years are their teachers. Practising early years teachers‟ attitudes towards mathematics influence the teaching methods they employ, which in turn, affects young students‟ attitudes towards mathematics, and ultimately, their achievement. However, little is known about practising early years teachers‟ attitudes to mathematics or how these attitudes form, which is the focus of this study. The research questions were: 1. What attitudes do practising early years teachers hold towards mathematics? 2. How did the teachers‟ mathematics attitudes form? This study adopted an explanatory case study design (Yin, 2003) to investigate practising early years teachers‟ attitudes towards mathematics and the formation of these attitudes. The research took place in a Brisbane southside school situated in a middle socio-economic area. The site was chosen due to its accessibility to the researcher. The participant group consisted of 20 early years teachers. They each completed the Attitude Towards Mathematics Inventory (ATMI) (Schackow, 2005), which is a 40 item instrument that measures attitudes across the four dimensions of attitude, namely value, enjoyment, self-confidence and motivation. The teachers‟ total ATMI scores were classified according to five quintiles: strongly negative, negative, neutral, positive and strongly positive. The results of the survey revealed that these teachers‟ attitudes ranged across only three categories with one teacher classified as strongly positive, twelve teachers classified as positive and seven teachers classified as neutral. No teachers were identified as having negative or strongly negative attitudes. Subsequent to the surveys, six teachers with a breadth of attitudes were selected from the original cohort to participate in open-ended interviews to investigate the formation of their attitudes. The interview data were analysed according to the four dimensions of attitudes (value, enjoyment, self-confidence, motivation) and three stages of education (primary, secondary, tertiary). Highlighted in the findings is the critical impact of schooling experiences on the formation of student attitudes towards mathematics. Findings suggest that primary school experiences are a critical influence on the attitudes of adults who become early years teachers. These findings also indicate the vital role tertiary institutions play in altering the attitudes of preservice teachers who have had negative schooling experiences. Experiences that teachers indicated contributed to the formation of positive attitudes in their own education were games, group work, hands-on activities, positive feedback and perceived relevance. In contrast, negative experiences that teachers stated influenced their attitudes were insufficient help, rushed teaching, negative feedback and a lack of relevance of the content. These findings together with the literature on teachers‟ attitudes and mathematics education were synthesized in a model titled a Cycle of Early Years Teachers’ Attitudes Towards Mathematics. This model explains positive and negative influences on attitudes towards mathematics and how the attitudes of adults are passed on to children, who then as adults themselves, repeat the cycle by passing on attitudes to a new generation. The model can provide guidance for practising teachers and for preservice and inservice education about ways to foster positive influences to attitude formation in mathematics and inhibit negative influences. Two avenues for future research arise from the findings of this study both relating to attitudes and secondary school experiences. The first question relates to the resilience of attitudes, in particular, how an individual can maintain positive attitudes towards mathematics developed in primary school, despite secondary school experiences that typically have a negative influence on attitude. The second question relates to the relationship between attitudes and achievement, specifically, why secondary students achieve good grades in mathematics despite a lack of enjoyment, which is one of the dimensions of attitude.