122 resultados para Towing.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Petersburg and Humberstone. Identified structures associated with the Canal include North and South Back Ditches, Bridge Tender's Building, Towing Path, Old Back Ditch, and Covered Drain. Features of the First Welland Canal are noted in red ink. Surveyor measurements and notes can be seen in red and black ink and pencil. Local area landmarks include bridge, barns, ruins of Stone Mill (burnt), Wesbern (Wabern) Hotel and spoil banks. Roads labelled running parallel to Canal is the south Road Allowance. Roads perpendicular to Canal include Road Allowance between 1st and 2nd Concession, Road to Waterloo Ferry, Road Allowance between 2nd and 3rd Concessions. Properties and property owners/renters are identified as follows: A. Augustine, Captain Duffil, O. Farres, I. Schooley, George Augustine, E. Schooley (Schooly), R. and J. Kilmer (Killmer), J. Urich, J. Thompson (Tompson), M. Reeb, G. Wilson, J. Klee, John Steel, E. Augustine, Furry, J. Jackson, Robert House, R. White, J. Crame, D. Saff, J. Kinnard, J. Schooley, Dickson, C. Erhoff, and G. Rother."Village of Petersburgh" - Scale 2 Chs. per Inch "Humberstone" - Scale 4 Chs. per Inch,
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Colborne and Grantham Township. Identified structures associated with the Canal include Basin, Guard Lock, Two Lock Tender Houses, Lock House Lot, Collectors Office House, Towing Path, North and South Back Ditches, and land reserved for future improvemnt of basin. Surveyor measurements and notes can be seen in red and black ink as well as pencil. Local area landmarks dentified include Bridge, Rail Road Swing Bridge, Spoil Bank, Water Tank, Frazer Street Railway Station, Buffalo and Lake Huron Rail Road, Welland Rail Road, and land reserved for "Gardens for Lock Tenders". Local businesses identified include A.K Scholfield Store House Lot and Wharf, two stores and a tavern. Roads running parallel to Canal include King St., "present Travel Road", and the Southern Road Allowance. Roads running perpendicular to Canal include Kent St., Charlotte St., Clarence St., Princess St., Elgin St., George St., Frazer St., Alma St., Eastern Road Allowance. Properties and property owners are also identified and include P. White, John Flynn, George McMicking, Charles Carter, William H. Merritt, A.K. Scholfield, F. Gallgher, Ed McCabe, M. Smith, E. Lawder, J. Hanley, J. Harris, P. Gibbons, M. McGoveran, M. Madden, J. Hardison, T. Nihan, D. Gibbons, J. Cross, William Mellanby, Elis Gordon, Jane McCardy, L.G. Carter, T. Greenwood, C. Armstrong, J. McGillivray, T. Schofield, Mrs. Lanue, D. Mc_______, K. Minor, J. Manly and John McRae.
Resumo:
No intuito de suprir a carência de informações sobre a comunidade ictioplanctônica da região amazônica, o presente trabalho procurou investigar as variações espaciais e temporais de densidade, diversidade e dos estágios ontogênicos das larvas de peixe, além disso, visou relacionar essas informações à qualidade ambiental da água e às características hidrodinâmicas dos cursos amostrados. As amostragens foram realizadas em outubro/2008, janeiro, abril e julho/2009 de acordo com os períodos climáticos que caracterizam a região. As capturas foram realizadas nos cursos hídricos que margeiam as ilhas do Combu e Murucutu, ou seja, nas águas do rio Guamá, do canal do Benedito e do furo da Paciência, o qual separa as duas ilhas. As larvas foram capturadas através de arrastos superficiais na coluna de água, com uma rede de plâncton cônico-cilíndrica de malha 330 μm, com 0,5 m de diâmetro e 2,5 m de comprimento. Em paralelo a captura das larvas, foram realizadas amostragens superficiais da água para análise de sua qualidade, assim como, foram coletados dados referentes à hidrodinâmica. A análise dos dados consistiu na aplicação das técnicas univariadas (ANOVA) e multivariadas (ACP; RDA). A comunidade de larvas de peixe representada por 4.983 indivíduos que se distribuíram entre as famílias Clupeidae, Engraulidae, Sciaenidae, Carangidae, Tetraodontidae e Hemiramphidae. As famílias Engraulidae e Clupeidae foram dominantes, seguidos pela família Sciaenidae. O pico larval, assim como, a maior densidade do estágio de pré-flexão, ocorreram em outubro/2008, mês incluso na estação seca, o que indica um período de desova na área. No furo da Paciência as larvas foram mais abundantes na extremidade Norte, devido ao maior fluxo de água oriunda do rio Guamá. Além disso, o furo da Paciência que diferiu em termos de densidade larval, representou um local de maior proteção às larvas de peixe, por concentrar a maior quantidade de indivíduos, sobretudo no mês de outubro/2008. Na área Leste do rio Guamá as larvas também foram abundantes, provavelmente por representar uma área menos agitada que a área Oeste. Entre todos os parâmetros analisados, os hidrodinâmicos foram os que apresentaram melhores associações com a comunidade ictioplanctônica. Não houve variação espacial dos estágios ontogênicos durante os quatro meses amostrados, porém ocorreu uma ocupação diferenciada ao nível taxonômico no mês de outubro/2008. Quanto à diversidade e a densidade larval, estas foram consideradas baixas, o que pode estar relacionado à grande influência das águas fluviais na área de estudo. A qualidade de água no entorno das ilhas Combu e Murucutu não representou um fator limitante para as larvas de peixe, portanto o impacto antrópico na área pode ser considerado um fator que ainda não está afetando a desova dos peixes. A dinâmica do fluxo de água no furo da Paciência permitiu definir que existe uma restrição quanto ao transporte de larvas de peixe entre o rio Guamá e o canal do Benedito.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
An analysis methodology is presented as well as a comparison of results obtained from vortex-induced motion (VIM) model tests of the MonoGoM platform, a monocolumn floating unit designed for the Gulf of Mexico. The choice of scale between the model and the platform in which the tests took place was a very important issue that took into account the basin dimensions and mooring design. The tests were performed in three different basins: the IPT Towing Tank in Brazil (Sept. 2005), the NMRI Model Ship Experimental Towing Tank in Japan (Mar. 2007), and the NMRI Experimental Tank in Japan (Jun. 2008). The purpose is to discuss the most relevant issues regarding the concept, execution, and procedures to comparatively analyze the results obtained from VIM model tests, such as characteristic motion amplitudes, motion periods, and forces. The results pointed out the importance of considering the 2DOF in the model tests, i.e., the coexistence of the motions in both in-line and transverse directions. The approach employed in the tests was designed to build a reliable data set for comparison with theoretical and numerical models for VIM prediction, especially that of monocolumn platforms. [DOI: 10.1115/1.4003494]
Resumo:
A number of autonomous underwater vehicles, AUV, are equipped with commercial ducted propellers, most of them produced originally for the remote operated vehicle, ROV, industry. However, AUVs and ROVs are supposed to work quite differently since the ROV operates in almost the bollard pull condition, while the AUV works at larger cruising speeds. Moreover, they can have an influence in the maneuverability of AUV due to the lift the duct generates in the most distant place of the vehicle's center of mass. In this work, it is proposed the modeling of the hydrodynamic forces and moment on a duct propeller according to a numerical (CFD) simulation, and analytical and semi-empirical, ASE, approaches. Predicted values are compared to experimental results produced in a towing tank. Results confirm the advantages of the symbiosis between CFD and ASE methods for modeling the influence of the propeller duct in the AUV maneuverability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.
Resumo:
The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.
Resumo:
The SES_GR2_Mesozooplankton dataset is based on samples taken during August-September 2008 in Ionian Sea, Libyan Sea, Southern Aegean Sea and Northern Aegean Sea. Sampling volume was estimated by the net mouth surface and the towing distance for WP-2. The sample was split on board in two halves by using the beaker approach. The first sub-sample was immediately fixed and preserved in a seawater formalin solution containing about 4% buffered formaldehyde to allow the determination of species composition abundance. Pipette for the subsamples used in the taxonomic analysis of zooplankton under binocular microscope.
Resumo:
The dataset is based on samples taken during March-April 2008 in Libyan Sea, in Southern Aegean Sea and in Northern Aegean Sea. Sampling volume was estimated by the net mouth surface and the towing distance for WP-2. Taxon-specific mesozooplankton abundance and total abundance: The sample was split on board in two halves by using the beaker approach. The first sub-sample was immediately fixed and preserved in a seawater formalin solution containing about 4% buffered formaldehyde to allow the determination of species composition abundance. Pipette for the subsamples used in the taxonomic analysis of zooplankton under binocular microscope.
Resumo:
Underwater georeferenced photo-transect survey was conducted on September 23 - 27, 2007 at different sections of the reef flat, reef crest and reef slope in Heron Reef. For this survey a snorkeler or diver swam over the bottom while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. A standard digital compact camera was placed in an underwater housing and fitted with a 16 mm lens which provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by three fin kicks of the survey diver/snorkeler, which corresponded to a surface distance of approximately 2.0 - 4.0 m. The GPS was placed in a dry-bag and logged its position as it floated at the surface while being towed by the photographer. A total of 3,586 benthic photos were taken. A floating GPS setup connected to the swimmer/diver by a line enabled recording of coordinates of each benthic. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Benthic or substrate cover data was derived from each photo by randomly placing 24 points over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned to 1 out of 80 cover types, which represented the benthic feature beneath it. Benthic cover composition summary of each photo scores was generated automatically using CPCE program. The resulting benthic cover data of each photo was linked to gps coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South.
Abundance of macrozooplankton in the north-eastern Black Sea during SESRU02 cruise in September 2008
Resumo:
The SESRU02_macrozooplankton dataset contains data collected in September 2008 at 15 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Ring net. Vertical tows of a Ring net, with mouth area 0.5 m**2, mesh size 400?m. Sample was taken from the layer 0-45 m. Towing speed: 0.8m/s. Samples were analyzed on board without preservation. Sampling volume was estimated by multiplying the mouth area by the wire length. The entire sample was analyzed on board. Macrozooplankton species were identified and enumerated.
Resumo:
The SESRU01 macrozooplankton dataset contains data collected in April 2008 at 19 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Ring net. Vertical tows of a Ring net, with mouth area 0.5 m**2, mesh size 400µm. Sample was taken from the layer 0-40 m. Towing speed: 0.8m/s. Samples were analyzed on board without preservation. Sampling volume was estimated by multiplying the mouth area with the wire length. Macrozooplankton species were identified and enumerated.
Resumo:
Mesopelagic fish were collected using a 1 m**2 Double-MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) and 4.5 m**2 IKMT (Isaacs-Kidd midwater trawl). The main portion of the IKMT was 20 mm knotted nylon, and the tail bag was 3 mm knotless nylon. Oblique IKMT tows were made to a maximum depth of 500 m at a tow speed of 3.5 knots. The original cruise plan intended for nighttime IKMT tows, but tow times varied due to operational constraints. The MOCNESS was equipped with 20 nets of 333 µm mesh size; 10 nets per side. The towing speed was 2 knots. Samples were collected to a maximum depth of 1250 m. The first oblique nets sampled from the surface to the max depth, and the other nets sampled depth stratified bins of the water column. MOCNESS hauls were performed during day and night to investigate diel vertical migrations. Mesoplelagic fish were processed on board. All fish were picked from all IKMT nets, most oblique MOCNESS nets, and the left side nets of the depth stratified MOCNESS samples. The Depth stratified nets from the right side of the MOCNESS frame were preserved in 5 % formalin for future quantitative analyses of the nekton. Fish were identified to the lowest possible taxa using Whitehead et al. (1984) and Fahay (2007). Standard length of each fish was measured to the nearest 0.1 mm using a digital caliper. Measured and identified fish were frozen in an -80 °C freezer, and shipped to the University of Hamburg at the end of the cruise.
Resumo:
Copepods were sampled at two sampling sites off the island of São Vicente, Cape Verde Archipelago, in spring (March/April) and early summer (May/June) of 2010. The two sampling sites were located in Mindelo Bay (16.90N, 25.01W; bottom depth 22 m) and around 8 km off the town of São Pedro (16.77N, 25.12W; bottom depth 800 m). Samples were collected on board the local fishing vessel 'Sinagoga' using a WP-2 net (Hydrobios, 0.26 m**2 mouth opening, 200 µm mesh size). The net was either applied as a driftnet, drifting for 10 min in 22 to 0 m depth below the surface, or it was towed vertically with a towing speed of 0.5 m/s**1. For stratified sampling, the net was deployed in repetitive hauls from 560 to 210 m, from 210 to 80 m, and from 80 to 0 m in March/April and from 600 to 300 m, 300 to 100 m, and 100 to 0 m in May/June. Additional depth-integrated hauls were conducted from 600-0 m or 500-0 m during both field campaigns. Respiration rates of epi- and mesopelagic calanoid copepods were measured in the land-based laboratory at the Instituto Nacional de Desenvolvimento das Pescas (INDP) in Mindelo. Oxygen consumption was measured non-invasively by optode respirometry at three different ambient temperatures (13, 18, and 23°C) with a 10-channel oxygen respirometer (Oxy-10 Mini, PreSens Precision Sensing GmbH, Regensburg, Germany). All experiments were run in darkness in temperature-controlled incubators (LMS Cooled Incubator Series 1A, Model 280) equipped with water baths to ensure constant temperatures throughout the experiments, tolerating a variation of ±1°C.