973 resultados para Total Angular-momentum


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T greater than or similar to 10(5). However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 less than or similar to nu(t) less than or similar to 0.1, which can explain transport in accretion flows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rotating shear flows, when angular momentum increases and angular velocity decreases as functions of radiation coordinate, are hydrodynamically stable under linear perturbation. The Keplerian flow is an example of such a system, which appears in an astrophysical context. Although decaying eigenmodes exhibit large transient energy growth of perturbation which could govern nonlinearity in the system, the feedback of inherent instability to generate turbulence seems questionable. We show that such systems exhibiting growing pseudo-eigenmodes easily reach an upper bound of growth rate in terms of the logarithmic norm of the involved non-normal operators, thus exhibiting feedback of inherent instability. This supports the existence of turbulence of hydrodynamic origin in the Keplerian accretion disc in astrophysics. Hence, this answers the question of the mismatch between the linear theory and experimental/observed data and helps in resolving the outstanding question of the origin of turbulence therein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius ( $r_{\rm orb}$) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of ${\rm d}r_{\rm orb}/{\rm d}J$ on the rate of change of the radial gradient of the Keplerian angular velocity at $r_{\rm orb}$ with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Origin of turbulence in cold accretion disks, particularly in 3D, which is expected to be hydrodynamic but not magnetohydrodynamic, is a big puzzle. While the flow must exhibit some turbulence in support of the transfer of mass inward and angular momentum outward, according to the linear perturbation theory it should always be stable. We demonstrate that the 3D secondary disturbance to the primarily perturbed disk which exhibits elliptical vortices into the system solves the problem. This result is essentially applicable to the outer region of accretion disks in active galactic nuclei where the gas is significantly cold and neutral in charge and the magnetic Reynolds number is smaller than 10^4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce the Milky Way and its accretion history, we find that, under certain conditions, the modeled rotational lag found is compatible with that observed in the Milky Way disk, thus indicating that minor mergers can be a viable way to produce it. The lag can increase with the vertical distance from the disk midplane, but only if the satellite is accreted along a direct orbit, and in all cases the main contribution to the lag comes from stars originally in the primary disk rather than from stars in the satellite galaxy. We also discuss the possibility of creating counter-rotating stars in the remnant disk, their fraction as a function of the vertical distance from the galaxy midplane, and the cumulative effect of multiple mergers on their creation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An exact classical theory of the motion of a point dipole in a meson field is given which takes into account the effects of the reaction of the emitted meson field. The meson field is characterized by a constant $\chi =\mu /\hslash $ of the dimensions of a reciprocal length, $\mu $ being the meson mass, and as $\chi \rightarrow $ 0 the theory of this paper goes over continuously into the theory of the preceding paper for the motion of a spinning particle in a Maxwell field. The mass of the particle and the spin angular momentum are arbitrary mechanical constants. The field contributes a small finite addition to the mass, and a negative moment of inertia about an axis perpendicular to the spin axis. A cross-section (formula (88 a)) is given for the scattering of transversely polarized neutral mesons by the rotation of the spin of the neutron or proton which should be valid up to energies of 10$^{9}$ eV. For low energies E it agrees completely with the old quantum cross-section, having a dependence on energy proportional to p$^{4}$/E$^{2}$ (p being the meson momentum). At higher energies it deviates completely from the quantum cross-section, which it supersedes by taking into account the effects of radiation reaction on the rotation of the spin. The cross-section is a maximum at E $\sim $ 3$\cdot $5$\mu $, its value at this point being 3 $\times $ 10$^{-26}$ cm.$^{2}$, after which it decreases rapidly, becoming proportional to E$^{-2}$ at high energies. Thus the quantum theory of the interaction of neutrons with mesons goes wrong for E $\gtrsim $ 3$\mu $. The scattering of longitudinally polarized mesons is due to the translational but not the rotational motion of the dipole and is at least twenty thousand times smaller. With the assumption previously made by the present author that the heavy partilesc may exist in states of any integral charge, and in particular that protons of charge 2e and - e may occur in nature, the above results can be applied to charged mesons. Thus transversely polarised mesons should undergo a very big scattering and consequent absorption at energies near 3$\cdot $5$\mu $. Hence the energy spectrum of transversely polarized mesons should fall off rapidly for energies below about 3$\mu $. Scattering plays a relatively unimportant part in the absorption of longitudinally polarized mesons, and they are therefore much more penetrating. The theory does not lead to Heisenberg explosions and multiple processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the phenomenon of electromagnetically induced transparency and absorption (EITA) using a control laser with a Laguerre-Gaussian (LG) profile instead of the usual Gaussian profile, and observe significant narrowing of the resonance widths. Aligning the probe beam to the central hole in the doughnut-shaped LG control beam allows simultaneously a strong control intensity required for high signal-to-noise ratio and a low intensity in the probe region required to get narrow resonances. Experiments with an expanded Gaussian control and a second-order LG control show that transit time and orbital angular momentum do not play a significant role. This explanation is borne out by a density-matrix analysis with a radially varying control Rabi frequency. We observe these resonances using degenerate two-level transitions in the D-2 line of Rb-87 in a room temperature vapor cell, and an EIA resonance with width up to 20 times below the natural linewidth for the F = 2 -> F' = 3 transition. Thus the use of LG beams should prove advantageous in all applications of EITA and other kinds of pump-probe spectroscopy as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports first observations of transition in recirculation pattern from an open-bubble type axisymmetric vortex breakdown to partially open bubble mode through an intermediate, critical regime of conical sheet formation in an unconfined, co-axial isothermal swirling flow. This time-mean transition is studied for two distinct flow modes which are characterized based on the modified Rossby number (Ro(m)), i.e., Ro(m) <= 1 and Ro(m) > 1. Flow modes with Ro(m) <= 1 are observed to first undergo cone-type breakdown and then to partially open bubble state as the geometric swirl number (S-G) is increased by similar to 20% and similar to 40%, respectively, from the baseline open-bubble state. However, the flow modes with Ro(m) > 1 fail to undergo such sequential transition. This distinct behavior is explained based on the physical significance associated with Ro(m) and the swirl momentum factor (xi). In essence, xi represents the ratio of angular momentum distributed across the flow structure to that distributed from central axis to the edge of the vortex core. It is observed that xi increases by similar to 100% in the critical swirl number band where conical breakdown occurs as compared to its magnitude in the S-G regime where open bubble state is seen. This results from the fact that flow modes with Ro(m) <= 1 are dominated by radial pressure gradient due to swirl/rotational effect when compared to radial pressure deficit arising from entrainment (due to the presence of co-stream). Consequently, the imparted swirl tends to penetrate easily towards the central axis causing it to spread laterally and finally undergo conical sheet breakdown. However, the flow modes with Ro(m) > 1 are dominated by pressure deficit due to entrainment effect. This blocks the radial inward penetration of imparted angular momentum thus preventing the lateral spread of these flow modes. As such these structures fail to undergo cone mode of vortex breakdown which is substantiated by a mere 30%-40% rise in xi in the critical swirl number range. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Characteristic burtsing behavior is observed in a driven, two-dimensional viscous flow, confined to a square domain and subject to no-slip boundaries. Passing a critical parameter value, an existing chaotic attractor undergoes a crisis, after which the flow initially enters a transient bursting regime. Bursting is caused by ejections from and return to a limited subdomain of the phase space, whereas the precrisis chaotic set forms the asymptotic attractor of the flow. For increasing values of the control parameter the length of the bursting regime increases progressively. Passing another critical parameter value, a second crisis leads to the appearance of a secondary type of bursting, of very large dynamical range. Within the bursting regime the flow then switches in irregular intervals from the primary to the secondary type of bursting. Peak enstrophy levels for both types of bursting are associated to the collapse of a primary vortex into a quadrupolar state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The number, the angles of orientation and the stability in Rumyantsev Movchan's sense of oblique steady rotations of a symmetric heavy gyroscope with a cavity completely filled with a uniform viscous liquid, possessing a fixed point 0 on its symmetric axis. are given for various values of the parameters. By taking the square of the upright component of the angular momentum M2 as a control parameter, three types of bifurcation diagrams of the steady rotations, two types of jumps and two kinds of local catastrophes, one being the symmetric reduced cusp type and the other being of the symmetric reduced butterfly type, are obtained. By taking account of the M2-damping owing to the moment of unavoidable faint friction, two different modes for the gyroscope, initially in a stable quasi-steady upright rotation with a nutation angle theta(s) equal to zero, to topple over are found.