A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields


Autoria(s): Mukhopadhyay, Banibrata; Saha, Kanak
Data(s)

01/02/2011

Resumo

The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T greater than or similar to 10(5). However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 less than or similar to nu(t) less than or similar to 0.1, which can explain transport in accretion flows.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/35978/1/A_possible.pdf

Mukhopadhyay, Banibrata and Saha, Kanak (2011) A possible origin of viscosity in Keplerian accretion disks due to secondary perturbation: Turbulent transport without magnetic fields. In: Research in Astronomy and Astrophysics, 11 (2). pp. 163-174.

Publicador

Natl Astronomical Observatories Chin Acad Sciences

Relação

http://iopscience.iop.org/1674-4527/11/2/004

http://eprints.iisc.ernet.in/35978/

Palavras-Chave #Astronomy and Astrophysics Programme
Tipo

Journal Article

PeerReviewed